首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX, I) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) hydrolyze at pH > 10 to form end products including NO2-, HCHO, HCOOH, NH3, and N2O, but little information is available on intermediates, apart from the tentatively identified pentahydro-3,5-dinitro-1,3,5-triazacyclohex-1-ene (II). Despite suggestions that RDX and HMX contaminated groundwater could be economically treated via alkaline hydrolysis, the optimization of such a process requires more detailed knowledge of intermediates and degradation pathways. In this study, we hydrolyzed the monocyclic nitramines RDX, MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine), and HMX in aqueous solution (pH 10-12.3) and found that nitramine removal was accompanied by formation of 1 molar equiv of nitrite and the accumulation of the key ring cleavage product 4-nitro-2,4-diazabutanal (4-NDAB, O2NNHCH2NHCHO). Most of the remaining C and N content of RDX, MNX, and HMX was found in HCHO, N2O, HCOOH, and NH3. Consequently, we selected RDX as a model compound and hydrolyzed it in aqueous acetonitrile solutions (pH 12.3) in the presence and absence of hydroxypropyl-beta-cyclodextrin (HP-beta-CD) to explore other early intermediates in more detail. We observed a transient LC-MS peak with a [M-H] at 192 Da that was tentatively identified as 4,6-dinitro-2,4,6-triaza-hexanal (O2NNHCH2NNO2CH2NHCHO, III) considered as the hydrolyzed product of II. In addition, we detected another novel intermediate with a [M-H] at 148 Da that was tentatively identified as a hydrolyzed product of III, namely, 5-hydroxy-4-nitro-2,4-diaza-pentanal (HOCH2NNO2CH2NHCHO, IV). Both III and IV can act as precursors to 4-NDAB. In the case of the polycyclic nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), denitration (two NO2-) also led to the formation of HCOOH, NH3, and N2O, but neither HCHO nor 4-NDAB were detected. The results provide strong evidence that initial denitration of cyclic nitramines in water is sufficient to cause ring cleavage followed by spontaneous decomposition to form the final products.  相似文献   

2.
Recently we demonstrated that Rhodococcus sp. strain DN22 degraded hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) (1) aerobically via initial denitration followed by ring cleavage. Using UL 14C-[RDX] and ring labeled 15N-[RDX] approximately 30% of the energetic chemical mineralized (one C atom) and 64% converted to a dead end product that was tentatively identified as 4-nitro-2,4-diaza-butanal (OHCHNCH2NHNO2). To have further insight into the role of initial denitration on RDX decomposition, we photolyzed the energetic chemical at 350 nm and pH 5.5 and monitored the reaction using a combination of analytical techniques. GC/ MS-PCI showed a product with a [M+H] at 176 Da matching a molecular formula of C3H5N5O4 that was tentatively identified as the initially denitrated RDX product pentahydro-3,5-dinitro-1,3,5-triazacyclohex-1-ene (II). LC/MS (ES-) showed that the removal of RDX was accompanied by the formation of two other key products, each showing the same [M-H] at 192 Da matching a molecular formula of C3H7N5O5. The two products were tentatively identified as the carbinol (III) of the enamine (II) and its ring cleavage product O2NNHCH2NNO2CH2NHCHO (IV). Interestingly, the removal of III and IV was accompanied by the formation and accumulation of OHCHNCH2NHNO2 that we detected with strain DN22. At the end of the experiment, which lasted 16 h, we detected the following products HCHO, HCOOH, NH2CHO, N2O, NO2-, and NO3-. Most were also detected during RDX incubation with strain DN22. Finally, we were unable to detect any of RDX nitroso products during both photolysis and incubation with the aerobic bacteria, emphasizing that initial denitration in both cases was responsible for ring cleavage and subsequent decomposition in water.  相似文献   

3.
Anaerobic transformation of the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by microorganisms involves sequential reduction of N-NO(2) to the corresponding N-NO groups resulting in the initial formation of MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine). MNX is further reduced to the dinitroso (DNX) and trinitroso (TNX) derivatives. In this paper, we describe the degradation of MNX and TNX by the unusual cytochrome P450 XplA that mediates metabolism of RDX in Rhodococcus rhodochrous strain 11Y. XplA is known to degrade RDX under aerobic and anaerobic conditions, and, in the present study, was found able to degrade MNX to give similar products distribution including NO(2)(-), NO(3)(-), N(2)O, and HCHO but with varying stoichiometric ratio, that is, 2.06, 0.33, 0.33, 1.18, and 1.52, 0.15, 1.04, 2.06, respectively. In addition, the ring cleavage product 4-nitro-2,4,-diazabutanal (NDAB) and a trace amount of another intermediate with a [M-H](-) at 102 Da, identified as ONNHCH(2)NHCHO (NO-NDAB), were detected mostly under aerobic conditions. Interestingly, degradation of TNX was observed only under anaerobic conditions in the presence of RDX and/or MNX. When we incubated RDX and its nitroso derivatives with XplA, we found that successive replacement of N-NO(2) by N-NO slowed the removal rate of the chemicals with degradation rates in the order RDX > MNX > DNX, suggesting that denitration was mainly responsible for initiating cyclic nitroamines degradation by XplA. This study revealed that XplA preferentially cleaved the N-NO(2) over the N-NO linkages, but could nevertheless degrade all three nitroso derivatives, demonstrating the potential for complete RDX removal in explosives-contaminated sites.  相似文献   

4.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a common contaminant of soil and water at military facilities. The present study describes degradation of RDX with zerovalent iron nanoparticles (ZVINs) in water in the presence or absence of a stabilizer additive such as carboxymethyl cellulose (CMC) or poly(acrylic acid) (PAA). The rates of RDX degradation in solution followed this order CMC-ZVINs > PAA-ZVINs > ZVINs with k1 values of 0.816 +/- 0.067, 0.082 +/- 0.002, and 0.019 +/- 0.002 min(-1), respectively. The disappearance of RDX was accompanied by the formation of formaldehyde, nitrogen, nitrite, ammonium, nitrous oxide, and hydrazine by the intermediary formation of methylenedinitramine (MEDINA), MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine), DNX (hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine), TNX (hexahydro-1,3,5-trinitroso-1,3,5-triazine). When either of the reduced RDX products (MNX or TNX) was treated with ZVINs we observed nitrite (from MNX only), NO (from TNX only), N2O, NH4+, NH2NH2 and HCHO. In the case of TNX we observed a new key product that we tentatively identified as 1,3-dinitroso-5-hydro-1,3,5-triazacyclo-hexane. However, we were unable to detect the equivalent denitrohydrogenated product of RDX and MNX degradation. Finally, during MNX degradation we detected a new intermediate identified as N-nitroso-methylenenitramine (ONNHCH2NHNO2), the equivalentof methylenedinitramine formed upon denitration of RDX. Experimental evidence gathered thus far suggested that ZVINs degraded RDX and MNX via initial denitration and sequential reduction to the corresponding nitroso derivatives prior to completed decomposition but degraded TNX exclusively via initial cleavage of the N-NO bond(s).  相似文献   

5.
Recently we demonstrated that hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a trimer of methylene nitramine (CH2=N-NO2) undergoes spontaneous decomposition following an initial microbial attack using a mixed microbial culture at pH 7 in the presence of glucose as carbon source. The present study describes whether the second cyclic nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), a more strained tetramer of CH2=N-NO2, degrades similarly using sludge of the same source. Part of HMX biotransformed to give products that are tentatively identified as the nitroso derivatives octahydro-1-nitroso-3,5,7-trinitro-1,3,5,7-tetrazocine (mNs-HMX) and octahydro-1,3-dinitroso-5,7-dinitro-1,3,5,7-tetrazocine and its isomer octahydro-1,5-dinitroso-3,7-dinitro-1,3,5,7-tetrazocine (dNs-HMX). Another fraction of HMX biotransformed, apparently via ring cleavage, to produce products that are tentatively identified as methylenedinitramine (O2NNHCH2-NHNO2) and bis(hydroxymethyl)nitramine ((HOCH2)2NNO2). None of the above intermediates accumulated indefinitely; they disappeared to predominantly form nitrous oxide (N2O) and formaldehyde (HCHO). Formaldehyde biotransformed further to eventually produce carbon dioxide (14CO2). Nitrous oxide persisted in HMX microcosms containing glucose but denitrified rapidly to nitrogen in the absence of glucose. The presence of nitrous oxide was accompanied by the presence of appreciable amounts of hydrogen sulfide, a known inhibitor of denitrification.  相似文献   

6.
以重组漆酶lac3基因同源性最高的3KW7作为模板进行同源模建,采用分子对接预测漆酶与黄曲霉毒素B1(aflatoxin B1,AFB1)的结合模式,结果显示漆酶与AFB1可以相互作用,氢键是其关键作用力,漆酶可用于黄曲霉毒素的降解。随后,通过实际的降解实验进行验证,响应面优化获得AFB1降解率最优的条件为底物AFB1 1 μg、孵育时间15 h、孵育温度34 ℃、酶活力2 U,降解率可达91.08%。在此条件下利用超高效液相色谱-飞行时间串联质谱分析AFB1降解产物结构,发现4 个主要降解产物,根据其二级质谱信息和精确分子质量,推测出降解产物的分子式分别为C16H22O4、C14H16N2O2、C7H12N6O和C24H30O6。  相似文献   

7.
RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) are cyclic nitramines ((CH2NNO2)n; n = 3 or 4, respectively) widely used as energetic chemicals. Their extensive use led to wide environmental contamination. In contrast to RDX, HMX tends to accumulate in soils due to its unique recalcitrance. In the present study, we investigated the potential of zerovalent iron (ZVI) to transform HMX under anoxic conditions. HMX underwent a rapid transformation when added in well-mixed anoxic ZVI-H2O batch systems to ultimately produce formaldehyde (HCHO), ammonium (NH4+), hydrazine (NH2NH2), and nitrous oxide (N2O). Time course experiments showed that the mechanism of HMX transformation occurred through at least two initial reactions. One reaction involved the sequential reduction of N-NO2 groups to the five nitroso products (1NO-HMX, cis-2NO-HMX, trans-2NO-HMX, 3NO-HMX, and 4NO-HMX). Another implied ring cleavage from either HMX or 1NO-HMX as demonstrated by the observation of methylenedinitramine (NH(NO2)CH2NH(NO2)) and another intermediate that was tentatively identified as (NH(NO2)CH2N(NO)CH2NH-(NO2)) or its isomer (NH(NO)CH2N(NO2)CH2NH(NO2)). This is the first study that demonstrates transformation of HMX by ZVI to significant amounts of NH2NH2 and HCHO. Both toxic products seemed to persist under reductive conditions, thereby suggesting that the ultimate fate of these chemicals, particularly hydrazine, should be understood prior to using zerovalent iron to remediate cyclic nitramines.  相似文献   

8.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) can be efficiently mineralized with anaerobic domestic sludge, but the initial enzymatic processes involved in its transformation are unknown. To test the hypothesis that the initial reaction involves reduction of nitro group(s), we designed experiments to test the ability of a nitrate reductase (EC 1.6.6.2) to catalyze the initial reaction leading to ring cleavage and subsequent decomposition. A nitrate reductase from Aspergillus niger catalyzed the biotransformation of RDX most effectively at pH 7.0 and 30 degrees C under anaerobic conditions using NADPH as electron donor. LC/MS (ES-) chromatograms showed the formation of hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and methylenedinitramine as key initial products of RDX, but neither the dinitroso neither (DNX) nor trinitroso (TNX) derivatives were observed. None of the above detected products persisted, and their disappearance was accompanied by the accumulation of nitrous oxide (N20), formaldehyde (HCHO), and ammonium ion (NH4+). Stoichiometric studies showed that three NADPH molecules were consumed, and one molecule of methylenedinitramine was produced per RDX molecule. The carbon and nitrogen mass balances were 96.14% and 82.10%, respectively. The stoichiometries and mass balance measurements supported a mechanism involving initial transformation of RDX to MNX via a two-electron reduction mechanism. Subsequent reduction of MNX followed by rapid ring cleavage gave methylenedinitramine which in turn decomposed in water to produce quantitatively N2O and HCHO. The results clearly indicate that an initial reduction of a nitro group by nitrate reductase is sufficient for the decomposition of RDX.  相似文献   

9.
A novel photo-Fenton catalyst, alpha-FeOOH loaded resin (alpha-FeOO HR), was synthesized and evaluated through transformation of a steroidal endocrine disrupting compounds (EDC), 17beta-estradiol (E2), under weak UV irradiation in the presence of H2O2. E2 photodegradation intermediates elucidated in detail by GC/MS and LC/MS/MS analyses and detailed reaction pathways are proposed. A yeast-based estrogen screen for E2 and its photodegradation intermediates was performed to measure the reduction of estrogenic activity in different water matrices during the heterogeneous photo-Fenton process. The results showed that alpha-FeOOHR not only degraded E2 but also removed the estrogenic activity originating from E2, its degradation intermediates, and its products. However, the water matrix present in drinking water may impactestrogenic activity reduction. The results are important to evaluate the ability of photo-Fenton advanced oxidation processes in reducing EDCs and their associated estrogenicity from drinking water.  相似文献   

10.
Photocatalytic degradations of alachlor in TiO2 suspensions with and without the use of hydrogen peroxide were studied using two different monochromatic UV irradiations (300 and 350 nm). Direct photolysis of alachlor was a rather slow process, but the addition of TiO2 enhanced the reaction rates by 12 and 26 times using 300 and 350 nm UV irradiation, respectively. The results showed that a low H2O2 dosage in photocatalysis using 300 nm UV would enhance the rates by 3.3 times, but an overdose of H2O2 will retard the rate due to the hydroxyl radicals are consumed. However, this process is impracticable at 350 nm due to the absorption characteristic of H2O2. A neutral initial pH level was found to favor the H2O2 assisted photocatalysis at 300 nm UV illumination. Eleven major intermediates were identified by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) and MS/MS. The major degradation mechanisms of H2O2-assisted alachlor photocatalysis include dechlorination, dealkylation, hydroxylation, cyclization, scission of C-O bond, and N-dealkylation. Bell-shaped evolution profiles of different intermediates were observed. Degradation pathways were proposed accordingly to illustrate series of degradation steps. The TOC analysis revealed the different stages of the reaction.  相似文献   

11.
The degradation characteristics and pathways of pentachlorophenol (PCP) by the photo-Fenton systems were studied in H2O2 aqueous solutions, which contained Fe(III) only [H2O2/Fe(III) system] and Fe(III) + humic acid (HA) [H2O2/Fe(III)/HA system] at pH 5.0. Although 40% of the PCP was degraded after 5 h of irradiation in the H2O2/Fe(III) system, more than 90% was degraded in the H2O2/Fe(III)/HA system. This shows that at pH 5.0 the degradation of PCP is clearly enhanced by the presence of HA in the photo-Fenton system. In the H2O2/Fe(III) system, the production of octachlorodibenzo-p-dioxin (OCDD) was detected, and 2-hydroxy nonachlorodiphenyl ether was also identified as a precursor of OCDD. However, no OCDD production was observed in the H2O2/Fe(III)/HA system. This indicates that the presence of HA represses the production of OCDD during the degradation of PCP by the photo-Fenton system. Such an effect by HA can be attributed to a reaction sequence wherein reaction intermediates derived from PCP, such as PCP., are incorporated into HA. This was verified by 13C NMR and pyrolysis-GC/MS studies.  相似文献   

12.
Previously we demonstrated that Rhodococcus sp. strain DN22 can degrade RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) aerobically via initial denitration. The present study describes the role of oxygen and water in the key denitration step leading to RDX decomposition using (18)O(2) and H(2)(18)O labeling experiments. We also investigated degradation of MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine) with DN22 under similar conditions. DN22 degraded RDX and MNX giving NO(2)(-), NO(3)(-), NDAB (4-nitro-diazabutanal), NH(3), N(2)O, and HCHO with NO(2)(-)/NO(3)(-) molar ratio reaching 17 and ca. 2, respectively. In the presence of (18)O(2), DN22 degraded RDX and produced NO(2)(-) with m/z at 46 Da that subsequently oxidized to NO(3)(-) containing one (18)O atom, but in the presence of H(2)(18)O we detected NO(3)(-) without (18)O. A control containing NO(2)(-), DN22, and (18)O(2) gave NO(3)(-) with one (18)O, confirming biotic oxidation of NO(2)(-) to NO(3)(-). Treatment of MNX with DN22 and (18)O(2) produced NO(3)(-) with two mass ions, one (66 Da) incorporating two (18)O atoms and another (64 Da) incorporating only one (18)O atom and we attributed their formation to bio-oxidation of the initially formed NO and NO(2)(-), respectively. In the presence of H(2)(18)O we detected NO(2)(-) with two different masses, one representing NO(2)(-) (46 Da) and another representing NO(2)(-) (48 Da) with the inclusion of one (18)O atom suggesting auto-oxidation of NO to NO(2)(-). Results indicated that denitration of either RDX or MNX and denitrosation of MNX by DN22 did not involve direct participation of either oxygen or water, but both played major roles in subsequent secondary chemical and biochemical reactions of NO and NO(2)(-).  相似文献   

13.
In recent years, the presence of pharmaceuticals in the aquatic environment has been of growing interest. These new contaminants are important because many of them are not degraded under the typical biological treatments applied in the wastewater treatment plants and represent a continuous input into the environment. Thus, compounds such as diclofenac are present in surface waters in all Europe and a crucial need for more enhanced technologies that can reduce its presence in the environment has become evident. In this sense, advanced oxidation processes (AOPs) represent a good choice for the treatment of hazardous nonbiodegradable pollutants. This work deals with the solar photodegradation of diclofenac, an antiinflammatory drug, in aqueous solutions by photo-Fenton reaction. A pilot-scale facility using a compound parabolic collector (CPC) reactor was used for this study. Results obtained show rapid and complete oxidation of diclofenac after 60 min, and total mineralization (disappearance of dissolved organic carbon, DOC) after 100 min of exposure to sunlight. Although diclofenac precipitates during the process at low pH, its degradation takes place in the homogeneous phase governed by a precipitation-redissolution-degradation process. Establishment of the reaction pathway was made possible by a thorough analysis of the reaction mixture identifying the main intermediate products generated. Gas chromatography-mass spectrometry (GC/ MS) and liquid chromatography coupled with time-of-flight mass spectrometry (LC/TOF-MS) were used to identify 18 intermediates, in two tentative degradation routes. The main one was based on the initial hydroxylation of the phenylacetic acid moiety in the C-4 position and subsequent formation of a quinone imine derivative that was the starting point for further multistep degradation involving hydroxylation, decarboxylation, and oxidation reactions. An alternative route was based on the transient preservation of the biphenyl amino moiety that underwent a similar oxidative process of C-N bond cleavage. The proposed degradation route differs from those previously reported involving alternative degradation processes (ozonization, UV/H2O2, or photolysis), indicating that diclofenac degradation follows different pathways, depending on the treatment applied.  相似文献   

14.
Dichlorvos (2,2-dichlorovinyl phosphate, DDVP) is a widely used organophosphorus insecticide. DDVP may be released into the atmosphere, where it may be transported for long distances and undergo chemical transformations. The mechanisms of the atmospheric reactions of DDVP have not been fully understood because of the short lifetime of its oxidized radical intermediates and the extreme difficulty in the detection of these species experimentally. In this paper, we carried out molecular orbital theory calculations for the OH-initiated atmospheric photooxidation of DDVP. The profile of the potential energy surface was constructed, and the possible channels involved in the reaction are discussed. Several energetically favorable reaction pathways are revealed for the first time. The calculated results were compared with the available experimental observations. Four product pathways are energetically feasible for DDVP degradation initiated by OH radicals in the atmosphere and are consistent with the experimentally observed products CCl2O and CO, but the additional products CCl2CHO, (CH3O)2P(O)OH, HO2, and a closed-shell organophosphorus compound denoted P10 are also predicted.  相似文献   

15.
The fermented foods yoghurt, bread and cheese were analysed for the presence of apparent total N-nitroso compounds (ATNC) by a group-selective procedure involving direct chemical denitrosation and chemiluminescence detection of the released nitric oxide. The levels of ATNC were below the 20 micrograms(N-NO)/kg detection limit in all 20 yoghurts, 23 of the 24 bread samples and 28 out of 31 different varieties of cheese analysed. ATNC were detected in most of those cheese samples manufactured with added nitrate, including Edam, Gouda and Havarti, in concentrations ranging from 30 to 210 micrograms(N-NO)/kg.  相似文献   

16.
Abstract: A part of the “bouquet of wines” can be caused by the presence of odorous heterocycles produced by chemical reactions between S‐amino acids and α‐dicarbonyl compounds. Under wine ageing physic‐chemical conditions (20 ± 2 °C, ethanol/water 12% v/v, pH 3.5), products of the diacetyl (DI) reaction with cysteine include a number of 1,3‐N,S and 1–3‐N,O 5 member heterocycles having methyl groups attached at C(2). The origin of this methyl‐C(2) fragment was not clear; it could be supplied from DI or from cysteine. To explore this question, a parallel reaction was run in which DI was replaced by 3,4‐hexanedione. With the C(1) and C(4) carbons of DI thus marked with methyl groups, the product distribution demonstrated that in the DI and cysteine reaction, both DI and cysteine provided the methyl‐C(2) to varying degrees in the formation of 2‐methylthiazole, 2‐methyl‐3‐thiazoline and 2,4,5‐trimethyloxazole but only cysteine supplied this fragment for 2‐methylthiazolidine. The results are interpreted in terms of reaction paths appropriate for the mild conditions. These pathways shed light on the mechanisms leading from dicarbonyls to heterocyclic compounds. Like all the chemical pathways, they anticipate the impact of other compounds and physicochemical parameters on heterocyclic generations the generation of heterocyclics. They also suggest the presence of unexplored odorous compounds.  相似文献   

17.
本研究通过煮制水中加入碳酸钠分析被污染挂面中DON毒素的去除作用。首先确定了加碱量对熟挂面品质的影响并分析了微波炉、电磁炉煮制挂面对DON去除效果的影响,研究结果表明:煮制水中添加0.25%碳酸钠对熟挂面品质无显著不良影响,并增加了DON毒素的去除效果;微波煮制挂面对DON毒素的去除率优于电磁炉煮制,但效果不显著。其次,以不同污染浓度的挂面进行0.25%碳酸钠煮制,获得DON毒素去除效果的预测曲线:y=0.4546x-0.0377,R2=0.9605,通过曲线可知,加碱煮制挂面可将DON毒素含量由2.30 mg/kg降至国家标准(1 mg/kg),显著优于无碱条件下煮制对DON毒素的去除效果。在此基础上,借助四极杆-飞行时间串联质谱仪(Q-TOF)分析0.20%碳酸钠条件下DON毒素标准品的降解产物,发现可能存在的降解产物为C15H20O6(iso DON,lactone DON)、C15H20O5(nor DON D)、C14H18O5(nor DON A,B,C),其产物毒性显著降低。利用0.25%碳酸钠煮制挂面具有较好的DON毒素降毒作用。  相似文献   

18.
Photocatalytic oxidation of gaseous 2-chloroethyl ethyl sulfide (2-CEES, ClCH2CH2SCH2CH3) over TiO2 illuminated with UV light and maintained at 25 or 80 degrees C in air has been investigated. 2-CEES was found to suffer progressive oxidation to yield ethylene (CH2CH2), chloroethylene (ClCHCH2), ethanol (CH3CH2OH), acetaldehyde (CH3C(O)H), chloroacetaldehyde (ClCH2C(O)H), diethyl disulfide (CH3CH2S2CH2CH3), 2-chloroethyl ethyl disulfide (ClCH2CH2S2CH2CH3), and bis(2-chloroethyl) disulfide (ClCH2CH2S2CH2CH2Cl) as the main primary intermediates, and water (H2O), carbon dioxide (CO2), sulfur dioxide (SO2), surface sulfate ions (SO4(2-)), and hydrogen chloride (HCl) as the final products. Trace concentrations of gaseous 2-chloroethanol (ClCH2CH2OH), ethanesulfonyl chloride (CH3CH2SO2Cl), ethyl thioacetate (CH3CH2SC(O)CH3), and considerable amounts of acetic acid (CH3C(O)OH), crotonaldehyde (CH3CHCHC(O)H), methyl acetate (CH3C(O)OCH3), and methyl formate (CH3OC(O)H) were also detected in the gas phase during the photooxidation conducted at 80 degrees C. Increase in temperature from 25 to 80 degrees C accelerates formation of gaseous ethanol, acetaldehyde, chloroacetaldehyde, diethyl disulfide, 2-chloroethyl ethyl disulfide, and bis(2-chloroethyl) disulfide but suppresses ethylene and chloroethylene production at initial stages of the process. Some aspects of the possible reaction mechanism leading to this wide array of intermediates and final products are discussed.  相似文献   

19.
Proteins contained in pollen and other biological particles are nitrated by ozone and nitrogen dioxide in polluted air. The nitration can enhance the allergenic potential of proteins, which may contribute to the increasing prevalence of allergic diseases. The reactive uptake of NO(2) by aerosolized protein (bovine serum albumin) was investigated in an aerosol flow tube using the short-lived radioactive tracer (13)N. In the absence of O(3), the NO(2) uptake coefficient was below detection limit (γ(NO2) < 10(-6)), but with 20-160 ppb O(3) γ(NO2) increased from ~10(-6) to ~10(-4). Using the kinetic multilayer model of surface and bulk chemistry (KM-SUB), the observed time and concentration dependence can be well reproduced by a multiphase chemical mechanism involving ozone-generated reactive oxygen intermediates (ROIs), but not by NO(3) radicals formed in the gas phase. Product studies show the formation of protein dimers, suggesting that the ROIs are phenoxy radical derivatives of the amino acid tyrosine (tyrosyl radicals) which are also involved in physiological protein nitration processes. Our results imply that proteins on the surface of aerosol particles undergo rapid nitration in polluted air, while the rate of nitration in bulk material may be low depending on phase state and surface-to-volume ratio.  相似文献   

20.
The previously developed batch anodic Fenton treatment (AFT) technology has been successfully applied to degrade various pesticides in aqueous solution. The goal of this work is the development of a flow-through AFT system (FAFT) which is critical to bringing this technology into practical general use in the field. For this purpose, the degradation of DEET (N,N-diethyl-3-methylbenzamide), an insect repellent, and nine model amides was studied. Oxidation products of these compounds in FAFT were identified by GC/MS, and the results revealed that various -OH additions (most likely on the aromatic ring), quinone/keto product formation, and dimerization/bimolecular disproportionation are the major reaction pathways. This proposed overall reaction mechanism was then combined with the basic Fenton's mechanism to model the kinetics of various active species in FAFT including DEET, Fe2+, H2O2, and total iron under different reaction conditions. In addition, both initial and steady-state hydroxyl radical concentrations were measured in FAFT using benzoic acid as a chemical probe; the measured *OH concentrations were best-fitted exponentially. On the basis of the obtained [*OH] trend and the mass balance of the FAFT system, a simple FAFT model was developed to fit all of the degradation data of DEET and the model amides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号