首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple and feasible technique is developed successfully to fabricate the cone-shaped tubular segmented-in-series solid oxide fuel cell (SOFC) stack. The cone-shaped tubular anode substrates and yttria-stabilized zirconia (YSZ) electrolyte films are fabricated by dip coating technique. After sintering at 1400 °C for 4 h, a dense and crack-free YSZ film with a thickness of about 35.9 μm is successfully obtained. The single cell, NiO–YSZ/YSZ/LSM–YSZ, provides a maximum power density of 1.08 and 1.35 W cm−2 at 800 and 850 °C, respectively, using moist hydrogen (75 ml/min) as fuel and ambient air as oxidant.A two-cell-stack based on the above-mentioned cone-shaped tubular anode-supported SOFC was assembled and tested. The maximum total power at 800 °C was about 3.7 W.  相似文献   

2.
Solid oxide fuel cells (SOFC) were fabricated with gadolinia-doped ceria (GDC)-yttria stabilized zirconia (YSZ), thin bi-layer electrolytes supported on Ni + YSZ anodes. The GDC and YSZ layer thicknesses were 45 μm, and ∼5 μm, respectively. Two types of cells were made; YSZ layer between anode and GDC (GDC/YSZ) and YSZ layer between cathode and GDC (YSZ/GDC). Two platinum reference electrodes were embedded within the GDC layer. Cells were tested at 650 °C with hydrogen as fuel and air as oxidant. Electric potentials between embedded reference electrodes and anode and between cathode and anode were measured at open circuit, short circuit and under load. The electric potential was nearly constant through GDC in the cathode/YSZ/GDC/anode cells. By contrast, it varied monotonically through GDC in the cathode/GDC/YSZ/anode cells. Estimates of oxygen chemical potential, μO2, variation through GDC were made. μO2 within the GDC layer in the cathode/GDC/YSZ/anode cell decreased as the current was increased. By contrast, μO2 within the GDC layer in the cathode/YSZ/GDC/anode cell increased as the current was increased. The cathode/YSZ/GDC/anode cell exhibited maximum power density of ∼0.52 W cm−2 at 650 °C while the cathode/GDC/YSZ/anode cell exhibited maximum power density of ∼0.14 W cm−2 for the same total electrolyte thickness.  相似文献   

3.
Solid oxide fuel cell (SOFC) systems for aircraft applications require an order of magnitude increase in specific power density (1.0 kW kg−1) and long life. While significant research is underway to develop anode supported cells which operate at temperatures in the range of 650–800 °C, concerns about Cr-contamination from the metal interconnect may drive the operating temperature down further, to 750 °C and lower. Higher temperatures, 850–1000 °C, are more favorable in order to achieve specific power densities of 1.0 kW kg−1. Since metal interconnects are not practical at these high temperatures and can account for up to 75% of the weight of the stack, NASA is pursuing a design that uses a thin, LaCrO3-based ceramic interconnect that incorporates gas channels into the electrodes. The bi-electrode supported cell (BSC) uses porous YSZ scaffolds, on either side of a 10–20 μm electrolyte. The porous support regions are fabricated with graded porosity using the freeze-tape casting process which can be tailored for fuel and air flow. Removing gas channels from the interconnect simplifies the stack design and allows the ceramic interconnect to be kept thin, on the order of 50–100 μm. The YSZ electrode scaffolds are infiltrated with active electrode materials following the high-temperature sintering step. The NASA-BSC is symmetrical and CTE matched, providing balanced stresses and favorable mechanical properties for vibration and thermal cycling.  相似文献   

4.
Operation of cone-shaped anode-supported segmented-in-series solid oxide fuel cell (SIS-SOFC) stack directly on methane is studied. A cone-shaped solid oxide fuel cell stack is assembled by connecting 11 cone-shaped anode-supported single cells in series. The 11-cell-stack provides a maximum power output of about 8 W (421.4 mW cm−2 calculated using active cathode area) at 800 °C and 6 W (310.8 mW cm−2) at 700 °C, when operated with humidified methane fuel. The maximum volumetric power density of the stack is 0.9 W cm−3 at 800 °C. Good stability is observed during 10 periods of thermal cycling test. SEM-EDX measurements are taken for analyzing the microstructures and the coking degrees.  相似文献   

5.
This study discusses the fabrication and electrochemical performance of micro-tubular solid oxide fuel cells (SOFCs) with an electrolyte consisting a single-grain-thick yttria stabilized zirconia (YSZ) layer. It is found that a uniform coating of an electrolyte slurry and controlled shrinkage of the supported tube leads to a dense, crack-free, single-grain-thick (less than 1 μm) electrolyte on a porous anode tube. The SOFC has a power density of 0.39 W cm−2 at an operating temperature as low as 600 °C, with YSZ and nickel/YSZ for the electrolyte and anode, respectively. An examination is made of the effect of hydrogen fuel flow rate and shown that a higher flow rate leads to better cell performance. Hence a YSZ cell can be used for low-temperature SOFC systems below 600 °C, simply by optimizing the cell structure and operating conditions.  相似文献   

6.
Anode-supported cone-shaped tubular solid oxide fuel cells (SOFCs) are successfully fabricated by a phase inversion method. During processing, the two opposite sides of each cone-shaped anode tube are in different conditions--one side is in contact with coagulant (the corresponding surface is named as “W-surface”), while the other is isolated from coagulate (I-surface). Single SOFCs are made with YSZ electrolyte membrane coated on either W-surface or I-surface. Compared to the cell with YSZ membrane on W-surface, the cell on I-surface exhibits better performance, giving a maximum power density of 350 mW cm−2 at 800 °C, using wet hydrogen as fuel and ambient air as oxidant. AC impedance test results are consistent with the performance. The sectional and surface structures of the SOFCs were examined by SEM and the relationship between SOFC performance and anode structure is analyzed. Structure of anodes fabricated at different phase inversion temperature is also investigated.  相似文献   

7.
Electromagnetic drop-on-demand direct ceramic inkjet printing (EM/DCIJP) was employed to fabricate dense yttria-stabilized zirconia (YSZ) electrolyte layers on a porous NiO-YSZ anode support from ceramic suspensions. Printing parameters including pressure, nozzle opening time and droplet overlapping were studied in order to optimize the surface quality of the YSZ coating. It was found that moderate overlapping and multiple coatings produce the desired membrane quality. A single fuel cell with a NiO-YSZ/YSZ (∼6 μm)/LSM + YSZ/LSM architecture was successfully prepared. The cell was tested using humidified hydrogen as the fuel and ambient air as the oxidant. The cell provided a power density of 170 mW cm−2 at 800 °C. Scanning electron microscopy (SEM) revealed a highly coherent dense YSZ electrolyte layer with no open porosity. These results suggest that the EM/DCIJP inkjet printing technique can be successfully implemented to fabricate electrolyte coatings for SOFC thinner than 10 μm and comparable in quality to those fabricated by more conventional ceramic processing methods.  相似文献   

8.
A novel design of solid oxide fuel cell (SOFC) which utilizes a thick film (<20 μm) as an electrolyte support is developed and tested. The sintered 16 μm-thick yttria-stabilized zirconia (YSZ) electrolyte film is mounted on a 1-mm thick YSZ ring by sintering the two pieces together. With this new configuration, it is possible to fabricate a thick (<20 μm) electrolyte-supported SOFC and measure the power density of the unit cell. With LSCF (La0.6Sr0.4Co0.2Fe0.8O3−δ) as a cathode and Ni–YSZ as a composite anode, the cell with a 16 μm-thick YSZ electrolyte achieves a high performance, i.e., a maximum power density of 590 mW cm−2 at 800 °C. This value is comparable with that of most anode-supported SOFCs using YSZ electrolytes.  相似文献   

9.
A low pressure injection molding (LPIM) technique is successfully developed to fabricate porous NiO–YSZ anode substrates for cone-shaped tubular anode-supported solid oxide fuel cells (SOFCs). The porosity and microstructure of the anode samples prepared with different amount of pore formers are investigated through the Archimedes method and SEM analysis. Experimental results show that with 15 wt.% paraffin as plasticizer, porosity of the NiO–YSZ substrates sintered at 1400 °C is proportional to the amount of graphite as pore former, and proper porosities can be obtained with or without 5 wt.% graphite. NiO–YSZ/YSZ/LSM–YSZ single cells are assembled and tested to demonstrate the feasibility of the LPIM technique. At 800 °C, with moist hydrogen (75 ml min−1) as fuel and ambient air as oxidant, the cell with the anode substrate fabricated with 5 wt.% pore former shows a maximum power density of 531 mW cm−2, while the cell without any pore former, 491 mW cm−2. Two of the single cells (without graphite) are applied to assemble a two-cell-stack which gives an open circuit voltage of 1.75 V and a maximum output power of 5.32 W, at operating temperature of 800 °C.  相似文献   

10.
In this study, an anode-supported hollow-fiber solid oxide fuel cell (SOFC) of diameter 1.7 mm has been successfully fabricated using the phase inversion and vacuum assisted coating techniques. The cell has a special structure consisting of a 12-μm-thick yttria-stabilized zirconia (YSZ) electrolyte film and a Ni-YSZ anode layer which has large finger-like pores on both sides of the hollow-fiber membrane. The hollow-fiber SOFC has an active electrode area of 0.63 cm2 and generates maximum power densities of 124, 287 and 377 mW cm−2 at 600, 700 and 800 °C, respectively, indicating that its use in applications requiring high power density is promising.  相似文献   

11.
NiO/yttria-stabilized zirconia (YSZ) anode substrates were fabricated at two compaction pressures of 200 and 1000 MPa, the particle size distributions of NiO and YSZ were investigated with powders treated under different conditions using a laser scattering technique (Mastersizer 2000, Malvern Instruments) and the effect of compaction pressure on the performance of solid oxide fuel cell (SOFC) anodes was investigated by studying the effect of compaction pressure on compaction density, sintered density, sintering shrinkage behavior, electronic and ionic conductivities. The results of investigation indicated that the SOFC with the anode compacted at a higher pressure exhibited a superior output performance, for example, a single cell with hydrogen as fuel and oxygen as oxidant exhibited excellent maximum power densities of 2.77 and 0.90 W cm−2 at 800 and 650 °C, respectively, which suggested the development of an intermediate temperature SOFC through optimization of anode fabrication parameters.  相似文献   

12.
A dense single-layer YSZ film has been successfully fabricated by a spin smoothing method. Followed by a simplified slurry coating, an additional spin smoothing process was conducted to obtain a thinner and smoother film. By employment of high-viscosity slurry including high YSZ content, the film has a suitable thickness by a single coating cycle. With Sm0.2Ce0.8O1.9 (SDC)-impregnated La0.7Sr0.3MnO3 (LSM) cathode and porous NiO–YSZ anode, single solid oxide fuel cell (SOFC) based on an 8-μm-thick YSZ film was obtained. Open-circuit voltage (OCV) of the cell was 1.04 V at 800 °C, and maximum power densities were 676, 965 and 1420 mW cm−2 at 700, 750 and 800 °C, respectively, using H2 at a flow rate of 40 mL min−1 as fuel and ambient air as oxidant. The power density could be increased to 1648 mW cm−2 at 800 °C when the flow rate of H2 was enhanced to 200 mL min−1.  相似文献   

13.
In order to improve the performance of the anode-supported electrolyte of solid oxide fuel cells (SOFCs), the anode electrode is modified by inserting an anode functional layer of nano-composite powders between a Ni–YSZ electrode and YSZ electrolyte. The NiO–YSZ nano-composite powders are fabricated by coating nano-sized Ni and YSZ particles on the YSZ core particle by the Pechini process. The reduction of the polarization resistance of a single cell that is applied to the anode functional layer is attributed to the increasing reaction of three-phase boundaries (TPBs) within the layer and the micro-structured uniformity in the electrode. Two methods were used, namely tape-casting/dip-coating and tape-casting/co-firing, for studying the performance. It can be concluded that the cell with an anode functional layer thickness (15–20 μm) and a microstructure of NiO–YSZ nano-composite materials which was fabricated by the tape-casting/dip-coating method improved the output power (to 1.3 W cm−2) at 800 °C using hydrogen as fuel and air as an oxidant.  相似文献   

14.
GdBaCo2O5+x (GBCO) was evaluated as a cathode for intermediate-temperature solid oxide fuel cells. A porous layer of GBCO was deposited on an anode-supported fuel cell consisting of a 15 μm thick electrolyte of yttria-stabilized zirconia (YSZ) prepared by dense screen-printing and a Ni–YSZ cermet as an anode (Ni–YSZ/YSZ/GBCO). Values of power density of 150 mW cm−2 at 700 °C and ca. 250 mW cm−2 at 800 °C are reported for this standard configuration using 5% of H2 in nitrogen as fuel. An intermediate porous layer of YSZ was introduced between the electrolyte and the cathode improving the performance of the cell. Values for power density of 300 mW cm−2 at 700 °C and ca. 500 mW cm−2 at 800 °C in this configuration were achieved.  相似文献   

15.
A fuel cell fuelled by carbonaceous graphite is proposed. The tubular fuel cell, with the carbon in a fixed-bed form on the anode side, is employed to convert directly the chemical energy of carbon into electricity. Surface platinum electrodes are coated on the cell electrolyte, which is a yttria-stabilized zirconia (YSZ) tube of 1.5 mm thickness. The effect of using different sizes of graphite powder (in the range 0-180 μm) as fuel is analyzed. Power density and actual open-circuit voltage (OCV) values are measured as the temperature is varied from 0 to 950 °C. The cell provides a maximum power density of 16.8 mW cm−2 and an OCV of 1.115 V at the highest temperature condition (950 °C) tested in this study.  相似文献   

16.
An anode support tubular solid oxide fuel cell (SOFC) is fabricated and the dependence of its polarization resistance on anode microstructural parameters is investigated by means of stereology and concept of contiguity (c-c) theory. Nickel yttria-stabilized zirconia (Ni-YSZ) anode supported cell with YSZ electrolyte, lanthanum-strontium-manganite (LSM)-YSZ composite cathode, and LSM cathode layers is fabricated by dip coating. Submicrometer resolution images of anode microstructure are successfully obtained by low voltage SEM-EDX and quantified by stereological analysis. Cell voltage measurements and impedance spectroscopy are performed at temperatures of 650 and 750 °C with hydrogen and nitrogen mixture gas as a fuel. A quantitative relationship between polarization resistance and microstructural parameters such as circularity, three-phase boundary length, contiguity, etc. is investigated using the concept of contiguity (c-c) theory. The effectiveness of correlating polarization resistance of anode supported tubular SOFC using stereology and c-c theory is evaluated.  相似文献   

17.
Anode-supported cone-shaped tubular solid oxide fuel cells (SOFCs) and segmented-in-series (SIS) SOFCs stack based on gadolinia-doped ceria (GDC) electrolyte film direct utilization methane as fuel are successfully developed in this study. The single cell exhibits maximum power densities of 484 mWcm−2 and 414 mWcm−2 at 600 °C by using moist hydrogen and moist methane as fuel, respectively. A durability test of the single NiO-GDC/GDC/LSCF-GDC cell is performed at a constant current density of 0.4 Acm−2 direct fueled with methane for about 140 h at 600 °C. It stabilizes with no apparent degradation during the durability test. Very little carbon is detected on the anodes, suggesting that carbon deposition is limited during cell operation. The results show that the stability and dependability of as-prepared single cell is good and it is very significant for portable application of low-temperature SOFCs (LT-SOFCs). A three-cell-stack based on the above-mentioned SOFCs is fabricated and tested by direct utilization of methane. Its typical electrochemical performance is investigated. And the stack has experienced 5 times thermal cycling test. Good thermo-mechanical properties and stability are observed and that the developed segmented-in-series LT-SOFCs stack with GDC electrolyte film is highly promising for portable application.  相似文献   

18.
To improve the performance of anode-supported solid oxide fuel cells (SOFCs), various types of single cells are manufactured using a thin-film electrolyte of Yttria stabilized zirconia (YSZ) and an anode functional layer composed of a NiO–YSZ nano-composite powder. Microstructural/electrochemical analyses are conducted. Single-cell performances are highly dependent on electrolyte thickness, to the degree that the maximum power density increases from 0.74 to 1.12 W cm−2 according to a decrease in electrolyte thickness from 10.5 to 6.5 μm at 800 °C. The anode functional layer reduced the polarization resistance of a single cell from 1.07 to 0.48 Ω cm2 at 800 °C. This is attributed to the provision by the anode layer of a highly reactive and uniform electrode microstructure. It is concluded that optimization of the thickness and homogeneity of component microstructure improves single-cell performances.  相似文献   

19.
Anode-supported solid oxide fuel cells (SOFC) comprising nickel + iron anode support and gadolinia-doped ceria (GDC) of composition Gd0.1Ce0.9O2−δ thin film electrolyte were fabricated, and their performance was evaluated. The ratio of Fe2O3 to NiO in the anode support was 3 to 7 on a molar basis. Fe2O3 and NiO powders were mixed in the desired proportions and discs were die-pressed. All other layers were sequentially applied on the anode support. The cell structure consisted of five distinct layers: anode support – Ni + Fe; anode functional layer – Ni + GDC; electrolyte – GDC; cathode functional layer – LSC (La0.6Sr0.4CoO3−δ) + GDC; and cathode current collector – LSC. Cells with three different variations of the electrolyte were made: (1) thin GDC electrolyte (∼15 μm); (2) thick GDC electrolyte (∼25 μm); and (3) tri-layer GDC/thin yttria-stabilized zirconia (YSZ)/GDC electrolyte (∼25 μm). Cells were tested with hydrogen as fuel and air as oxidant up to 650 °C. The maximum open circuit voltage measured at 650 °C was ∼0.83 V and maximum power density measured was ∼0.68 W cm−2. The present work shows that cells with Fe + Ni containing anode support can be successfully made.  相似文献   

20.
Optimization of the electrode microstructure in a solid oxide fuel cell (SOFC) is an important approach to performance enhancement. In this study, the relationship between the microstructure and electrochemical performance of an anode electrode fabricated by ultrasonic spray pyrolysis was investigated. Nickel-Ce0.9Gd0.1O1.95 (Ni-CGO) anodes were deposited on a dense yttria stabilized zirconia (YSZ) substrate by ultrasonic spray pyrolysis, and the resulting microstructure was analyzed. Scanning electron microscope (SEM) examinations revealed the impact of deposition temperature and precursor solution concentration on anode morphology, particle size and porosity. The electrochemical performance of the anode was measured by electrochemical impedance spectroscopy (EIS) using a Ni-CGO/YSZ/Ni-CGO symmetrical cell. The deposited anode had a particle size and porosity in ranging between 1.5-17 μm and 21%-52%, respectively. The estimated volume-specific triple phase boundary (TPB) length increased from 1.37 × 10−3 μm μm−3 to 1.77 × 10−1 μm μm−3as a result of decrease of the particle size and increase of the porosity. The corresponding area specific charge transfer resistance decreased from 5.45 ohm cm2 to 0.61 ohm cm2 and the activation energy decreased from 1.06 eV to 0.86 eV as the TPB length increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号