首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beer brewing using a fusant between a sake yeast (a lysine auxotrophic mutant of sake yeast K-14) and a brewer's yeast (a respiratory-deficient mutant of the top fermentation yeast NCYC1333) was performed to take advantage of the beneficial characteristics of sake yeasts, i.e., the high productivity of esters, high tolerance to ethanol, and high osmotolerance. The fusant (F-32) obtained was different from the parental yeasts regarding, for example, the assimilation of carbon sources and tolerance to ethanol. A brewing trial with the fusant was carried out using a 100-l pilot-scale plant. The fusant fermented wort more rapidly than the parental brewer's yeast. However, the sedimentation capacity of the fusant was relatively low. The beer brewed using the fusant contained more ethanol and esters compared to that brewed using the parental brewer's yeast. The fusant also obtained osmotolerance in the fermentation of maltose and fermented high-gravity wort well.  相似文献   

2.
A novel breeding strategy for a high tyrosol‐producing sake yeast was developed by isolating an ethanol‐resistant mutant from a tryptophan auxotrophic mutant of a sake brewery yeast. Since tyrosol has antioxidant, cardioprotective and taste‐sharpening effects, increasing the tyrosol level of alcohol beverages could be beneficial in alcohol production. Since the transporters of aromatic amino acids are degraded by several stresses and mutants defective in the synthesis of aromatic amino acids are sensitive to ethanol, it was hypothesized that the degradation of these transporters should be inhibited in ethanol resistant mutants isolated from the auxotrophic mutants of aromatic amino acids, and that the uptake of aromatic amino acids would be increased in the mutants. Consistent with this hypothesis, sake was brewed with the ethanol‐resistant mutant of a tryptophan auxotrophic mutant and the sake was found to contain a lesser content of tyrosine and a higher content of tyrosol relative to the sake brewed with the parental strains. The taste of the sake brewed with the mutant strain could be discriminated from the sake brewed with the parental strains, probably because of the altered concentrations of tyrosol and certain amino acids and organic acids. The results suggest that combining the isolation of an ethanol‐resistant mutant and an auxotrophic mutant is an effective method to breed a brewing strain with a modified metabolism of these substances. Copyright © 2012 The Institute of Brewing & Distilling  相似文献   

3.
Sake yeast strains produce a high concentration of ethanol during sake brewing compared to laboratory yeast strains. As ethanol fermentation by yeast cells continues even after cell growth stops, analysis of the physiological state of the stationary phase cells is very important for understanding the mechanism of producing higher concentrations of ethanol. We compared the physiological characteristics of stationary phase cells of both sake and laboratory yeast strains in an aerobic batch culture and under sake brewing conditions. We unexpectedly found that sake yeast cells in the stationary phase had a lower buoyant density and stress tolerance than did the laboratory yeast cells under both experimental conditions. These results suggest that it is difficult for sake yeast cells to enter a quiescent state after cell growth has stopped, which may be one reason for the higher fermentation rate of sake yeast compared to laboratory yeast strains.  相似文献   

4.
Sake yeast can produce high levels of ethanol in concentrated rice mash. While both sake and laboratory yeast strains belong to the species Saccharomyces cerevisiae, the laboratory strains produce much less ethanol. This disparity in fermentation activity may be due to the strains' different responses to environmental stresses, including ethanol accumulation. To obtain more insight into the stress response of yeast cells under sake brewing conditions, we carried out small-scale sake brewing tests using laboratory yeast strains disrupted in specific stress-related genes. Surprisingly, yeast strains with disrupted ubiquitin-related genes produced more ethanol than the parental strain during sake brewing. The elevated fermentation ability conferred by disruption of the ubiquitin-coding gene UBI4 was confined to laboratory strains, and the ubi4 disruptant of a sake yeast strain did not demonstrate a comparable increase in ethanol production. These findings suggest different roles for ubiquitin in sake and laboratory yeast strains.  相似文献   

5.
The ratio of organic acids in sake mash is a very important factor affecting the taste of alcoholic beverages. To alter the organic acid composition in sake and investigate the mechanism of producing organic acids in sake mash, we examined the effect of NAD+-dependent isocitrate dehydrogenase (IDH) activity deficiency in sake yeast by disrupting the IDH1 or IDH2 gene. Two haploid strains (MATa or MATa genotype) isolated from sake yeast Kyokai no. 701 (K701) were disrupted using the aureobasidin A resistant gene (AUR1-C) as a selection marker. These disruptants were defective in the activity of IDH and failed to grow on medium containing glycerol as a sole carbon source. Sake meter, alcohol concentration, and glucose consumption in sake brewed with the disruptants were reduced in comparison with those of the parental strains. The production of citrate (including isocitrate), malate, and acetate by the disruptants was increased, but succinate production was reduced to approximately half in comparison with the parental strains. These results indicate that approximately half the amount of succinate in sake mash is produced via the oxidative pathway of the TCA cycle in sake yeast. While the diploid strain constructed by mating haploid disruptants for the IDH gene exhibited stronger fermentation ability than the haploid disruptants, almost similar profiles of components in sake were obtained for both strains.  相似文献   

6.
A haploid sake yeast strain derived from the commercial diploid sake yeast strain Kyokai no. 7 showed better characteristics for sake brewing compared to the haploid laboratory yeast strain X2180-1B, including higher production of ethanol and aromatic components. A hybrid of these two strains showed intermediate characteristics in most cases. After sporulation of the hybrid strain, we obtained 100 haploid segregants of the hybrid. Small-scale sake brewing tests of these segregants showed a smooth continuous distribution of the sake brewing characteristics, suggesting that these traits are determined by multiple quantitative trait loci (QTLs). To examine these sake brewing characteristics at the genomic level, we performed QTL analysis of sake brewing characteristics using 142 DNA markers that showed heterogeneity between the two parental strains. As a result, we identified 25 significant QTLs involved in the specification of sake brewing characteristics such as ethanol fermentation and the production of aromatic components.  相似文献   

7.
Screening of drug‐resistant mutants of sake yeast strains has been a major method for creation of superior strains. We attempted to create a valproic acid (VPA)‐resistant mutant strain from sake yeast Kyokai No. 7 (K7). VPA is a branched‐chain fatty acid and is an inositol synthesis inhibitor in mammals and yeast. We succeeded in isolating a mutant of strain K7 that can survive long‐term in a VPA‐containing medium. This strain, K7‐VPALS, is significantly more resistant to not only VPA‐induced cell death but also ethanol in comparison with the parent strain. Further experiments showed that the new strain is likely to have a deficiency in inositol and/or phosphatidylinositol synthesis. The major characteristics of sake brewed by strain K7‐VPALS (compared with K7) were lower amino acidity, higher isoamyl acetate content without an increase in the isoamyl alcohol level and changes in constituent organic acids, particularly higher malate and succinate but lower acetate concentrations. In addition, taste sensor analysis revealed that K7‐VPALS‐brewed sake has milder sourness and higher saltiness or richness than K7‐brewed sake does. High isoamyl acetate production may be related to a deficiency in phosphatidylinositol because this compound directly inhibits alcohol acetyltransferase, an enzyme responsible for isoamyl acetate synthesis. Strain K7‐VPALS grew more rapidly than the parental strain did in a medium containing acetate as a sole carbon source, indicating that K7‐VPALS effectively assimilates acetate and converts it to malate and succinate through the glyoxylate cycle. Thus, strain K7‐VPALS shows improved characteristics for brewing of high‐quality sake. Copyright © 2017 The Institute of Brewing & Distilling  相似文献   

8.
Clotrimazole-resistant mutants from sake yeasts show improved fermentative activity in sake mash and pleiotropic drug resistance (PDR). The PDR mechanism is interpreted by overexpression of ATP-binding cassette (ABC) transporters, which extrude various kinds of drugs out of a cell. In a clotrimazole-resistant mutant, CTZ21, isolated from the haploid sake yeast HL69, the levels of mRNA for three major ABC transporter genes, PDR5, SNQ2, and YOR1, markedly increased. These three genes of CTZ21 were disrupted to investigate which participated in the improved fermentative activity of CTZ21. The fermentative activities of deltapdr5 and deltasnq2 strains of CTZ21 were reduced to that of HL69 in the initial and middle stages of fermentation. In the last stage, however, the sake meter [(1/gravity - 1) x 1443] of the deltapdr5 and deltasnq2 strains rose faster than that of HL69. On the other hand, a deltayor1 strain of CTZ21 fermented sake mash in a manner nearly identical to that of CTZ21 until the last stage of fermentation. But in the last stage, fermentation of the deltayor1 slowed down compared with that of CTZ21. A deltayor1 strain of HL69 also exhibited much reduced fermentative activity in the middle and last fermentation stages. The YOR1 gene seems necessary for sake fermentation to be completed efficiently. The ATP content in sake mash brewed with CTZ21 was drastically decreased throughout the whole fermentation period. This low ATP level was restored to a medium level in the cases of both the deltapdr5 and deltasnq2 strains of CTZ21. In contrast, the deltayor1 of CTZ21 exhibited a low ATP level in sake mash in the same manner as CTZ21. These results suggest that the low ATP level of CTZ21 contributes to a certain extent its improved fermentative activity in the initial and middle stages of sake fermentation.  相似文献   

9.
10.
通过对猕猴桃发酵果酒的发酵工艺以及筛选的野生猕猴桃酵母菌种的发酵性能的研究,结果表明:被筛选的猕猴桃酵母菌株具有良好的发酵性能;在主发酵期间,酵母用量确定为7.0%~9.0%,发酵温度为27℃~30℃。  相似文献   

11.
选取贵州遵义、荔波、六盘水、都匀4个地区的新鲜刺梨为实验材料,采用孟加拉红培养基分离纯化、2,3,5-三苯基氯化四氮唑(TTC)培养基初筛产酒精能力强的酵母菌株,结合杜氏小管产气实验和耐受性实验复筛发酵性能优良的酵母菌株,然后采用复筛菌株酿造刺梨果酒,测定果酒理化指标,最后基于26S rDNA基因序列对复筛菌株进行分子生物学鉴定。结果表明,从刺梨中共分离得到35株酵母菌,并从中复筛3株优良酵母,编号分别为GL14、GP21、GP24,其产气快、凝聚性强,可耐受50%葡萄糖、18%vol乙醇、300 mg/L SO2、pH=2环境。菌株GL14、GP24发酵酿制的刺梨果酒在澄清度及酒精度方面优于菌株GP21,而菌株GP21在刺梨果酒的香气上更优,说明3株酵母菌均具有刺梨果酒酿造潜力。经鉴定,菌株GL14为异常威克汉姆酵母(Wickerhamomyces anomalus),菌株GP21、GP24为热带假丝酵母(Candida tropicalis)。  相似文献   

12.
13.
Sake yeast exhibit various characteristics that make them more suitable for sake brewing compared to other yeast strains. Since sake yeast strains are Saccharomyces cerevisiae heterothallic diploid strains, it is likely that they have heterozygous alleles on homologous chromosomes (heterozygosity) due to spontaneous mutations. If this is the case, segregation of phenotypic traits in haploid strains after sporulation and concomitant meiosis of sake yeast strains would be expected to occur. To examine this hypothesis, we isolated 100 haploid strains from Kyokai No. 7 (K7), a typical sake yeast strain in Japan, and compared their brewing characteristics in small‐scale sake‐brewing tests. Analyses of the resultant sake samples showed a smooth and continuous distribution of analytical values for brewing characteristics, suggesting that K7 has multiple heterozygosities that affect brewing characteristics and that these heterozygous alleles do segregate after sporulation. Correlation and principal component analyses suggested that the analytical parameters could be classified into two groups, indicating fermentation ability and sake flavour. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Sake yeasts are used for sake brewing and have a crucial role in the quality of sake, since they produce not only ethanol but also various compounds that provide sake flavors. Therefore, the appropriate selection and monitoring of a strain used in sake mash is important. However, the identification of specific sake yeast strains has been difficult, because sake yeasts have similar characteristics in taxonomic and physiological analyses. We found amplified fragment length polymorphisms (AFLPs) in the PCR products of the AWA1 gene of sake yeast strains. The AWA1 gene encodes a cell wall protein that is responsible for foam formation in sake mash. This polymorphism of the AWA1 gene can be used for the identification of sake yeast strains.  相似文献   

15.
Clotrimazole-resistant mutants from sake yeasts show improved fermentative activity in sake mash and pleiotropic drug resistance (PDR). The PDR mechanism is interpreted by overexpression of ATP-binding cassette (ABC) transporters, which extrude various kinds of drugs out of a cell. In a clotrimazole-resistant mutant, CTZ21, isolated from the haploid sake yeast HL69, the levels of mRNA for three major ABC transporter genes, PDR5, SNQ2, and YOR1, markedly increased. These three genes of CTZ21 were disrupted to investigate which participated in the improved fermentative activity of CTZ21. The fermentative activities of Δpdr5 and Δsnq2 strains of CTZ21 were reduced to that of HL69 in the initial and middle stages of fermentation. In the last stage, however, the sake meter [(1/gravity-1) × 1443] of the Δpdr5 and Δsnq2 strains rose faster than that of HL69. On the other hand, a Δyor1 strain of CTZ21 fermented sake mash in a manner nearly identical to that of CTZ21 until the last stage of fermentation. But in the last stage, fermentation of the Δyor1 slowed down compared with that of CTZ21. A Δyor1 strain of HL69 also exhibited much reduced fermentative activity in the middle and last fermentation stages. The YOR1 gene seems necessary for sake fermentation to be completed efficiently. The ATP content in sake mash brewed with CTZ21 was drastically decreased throughout the whole fermentation period. This low ATP level was restored to a medium level in the cases of both the Δpdr5 and Δsnq2 strains of CTZ21. In contrast, the Δyor1 of CTZ21 exhibited a low ATP level in sake mash in the same manner as CTZ21. These results suggest that the low ATP level of CTZ21 contributes to a certain extent its improved fermentative activity in the initial and middle stages of sake fermentation.  相似文献   

16.
Sake yeasts take up gamma-aminobutyric acid (GABA) derived from rice-koji in the primary stage of sake brewing. The GABA content in sake brewed with the UGA1 disruptant, which lacked GABA transaminase, was higher than that brewed with the wild-type strain K701. The UGA1 disruptant derived from sake yeast could not grow on a medium with GABA as the sole nitrogen source. We have isolated the sake yeast mutants of K701 that were unable to grow on a medium containing GABA as the sole nitrogen source. The growth defect of GAB7-1 and GAB7-2 mutants on GABA plates was complemented by UGA1, which encodes GABA transaminase, and UGA2, which encodes succinic semialdehyde dehydrogenase (SSADH), respectively. DNA sequence analysis revealed that GAB7-1 had a homozygous nonsense mutation in UGA1 and GAB7-2 had a heterozygous mutation (G247D) in UGA2. The GABA transaminase activity of GAB7-1 and the SSADH activity of GAB7-2 were markedly lower than those of K701. These GAB mutants displayed a higher intracellular GABA content. The GABA contents in sake brewed with the mutants GAB7-1 and GAB7-2 were 2.0 and 2.1 times higher, respectively, than that brewed with the wild-type strain K701. These results suggest that the reduced function of the GABA utilization pathway increases the GABA content in sake.  相似文献   

17.
In the traditional (kimoto) method of sake (Japanese rice wine) brewing, Saccharomyces cerevisiae yeast cells are exposed to lactate, which is produced by lactic acid bacteria in the seed mash. Lactate promotes the appearance of glucose-repression-resistant [GAR+] cells. Herein, we compared the resistance to glucose repression among kimoto, industrial, and laboratory yeast strains. We observed that the frequencies of the spontaneous emergence of [GAR+] cells among the kimoto strains were higher than those among the industrial and laboratory strains. The fermentation ability of a kimoto yeast (strain U44) was lower than that of an industrial strain (K701), as [GAR+] cells generally showed slower ethanol production. The addition of lactate decreased the fermentation abilities of the K701 strain by increasing the number of [GAR+] cells, but it did not affect those of the U44 strain. These results suggest that lactate controlled fermentation by promoting the appearance of [GAR+] cells in the industrial sake strains but not in the kimoto strains.  相似文献   

18.
During bread-making processes, yeast cells are exposed to various baking-associated stresses. High-sucrose concentrations exert severe osmotic stress that seriously damages cellular components by generation of reactive oxygen species (ROS). Previously, we found that the accumulation of proline conferred freeze-thaw stress tolerance and the baker's yeast strain that accumulated proline retained higher-level fermentation abilities in frozen doughs than the wild-type strain. In this study, we constructed self-cloning diploid baker's yeast strains that accumulate proline. These resultant strains showed higher cell viability and lower intracellular oxidation levels than that observed in the wild-type strain under high-sucrose stress condition. Proline accumulation also enhanced the fermentation ability in high-sucrose-containing dough. These results demonstrate the usefulness of proline-accumulating baker's yeast for sweet dough baking.  相似文献   

19.
Succinate and malate are the main taste components produced by yeast during sake (Japanese alcohol beverage) fermentation. Sake yeast strains possessing various organic acid productivities were isolated by gene disruption. Sake fermented using the aconitase gene (ACO1) disruptant contained a two-fold higher concentration of malate and a two-fold lower concentration of succinate than that made using the wild-type strain K901. The fumarate reductase gene (OSM1) disruptant produced sake containing a 1.5-fold higher concentration of succinate as compared to the wild-type, whereas the alpha-ketoglutarate dehydrogenase gene (KGD1) and fumarase gene (FUMI) disruptants gave lower succinate concentrations. The Deltakgd1 disruptant exhibited lower succinate productivity in the earlier part of the sake fermentation, while the Deltafum1 disruptant showed lower succinate productivity later in the fermentation, indicating that succinate is mainly produced by an oxidative pathway of the TCA cycle in the early phase of sake fermentation and by a reductive pathway in the later phases. Sake yeasts with low succinate productivity and/or high malate productivity was bred by isolating mutants unable to assimilate glycerol as a carbon source. Low malate-producing yeasts were also obtained from phenyl succinate-resistant mutants. The mutation of one of these mutant strains with low succinate productivity was found to occur in the KGD1 gene. These strains possessing various succinate- and/or malate-producing abilities are promising for the production of sake with distinctive tastes.  相似文献   

20.
Three beta-glucosidase- and two endoglucanase-encoding genes were cloned from Aspergillus oryzae, and their gene products were displayed on the cell surface of the sake yeast, Saccharomyces cerevisiae GRI-117-UK. GRI-117-UK/pUDB7 displaying beta-glucosidase AO090009000356 showed the highest activity against various substrates and efficiently produced ethanol from cellobiose. On the other hand, GRI-117-UK/pUDCB displaying endoglucanase AO090010000314 efficiently degraded barley beta-glucan to glucose and smaller cellooligosaccharides. GRI-117-UK/pUDB7CB codisplaying both beta-glucosidase AO090009000356 and endoglucanase AO090010000314 was constructed. When direct ethanol fermentation from 20 g/l barley beta-glucan as a model substrate was performed with the codisplaying strain, the ethanol concentration reached 7.94 g/l after 24 h of fermentation. The conversion ratio of ethanol from beta-glucan was 69.6% of the theoretical ethanol concentration produced from 20 g/l barley beta-glucan. These results showed that sake yeast displaying A. oryzae cellulolytic enzymes can be used to produce ethanol from cellulosic materials. Our constructs have higher ethanol production potential than the laboratory constructs previously reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号