首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
直流融冰技术的研究及应用   总被引:15,自引:0,他引:15  
通过对目前常用的一些融冰方法介绍分析可知,直流融冰方法是最理想、有效的方法.分析了直流融冰技术的基本理论,计算出不同类型线路的融冰电流和所需电源容量.设计出容量不同的固定式和移动式融冰装置用于不同电压等级的交流线路融冰.根据计算的南方电网典型高压直流输电系统的线路融冰保线电流,提出了不改变主回路结构采用一极功率正送,另一极功率反送的运行方式对直流线路进行保线的方法.借助实时数字仿真系统解决了高肇直流输电工程线路保线运行方式的关键技术.研究成果成功应用于高肇直流输电工程中,保障了系统在冬季覆冰时的安全可靠运行.  相似文献   

2.
2008年11月29日,国家电网公司在已投运的±500kV三峡送出龙泉—政平直流系统成功进行了超高压直流输电系统融冰方式试验,一直处于研究阶段的融冰运行方式在实际工程得到了验证,填补了国内外超高压直流融冰方式运行的空白,丰富了直流线路防冰抗冰反事故技术措施,对今后直流线路防冰抗冰工作具有重要意义。11月29日,先后进行了融冰方式启动、模拟线路故障再起动、模拟单极故障停运、全压运行下电流升至额定3000A运行、全压运行下5%过负荷运行、一极降压一极全压不对称运行、双极降压运行等试验,各项试验性能指标正常。试验结果表明,改进后,龙政直流输电系统可以安全可靠运行在融冰方式,即一极以额定电流甚至过负荷电流进行正送、另一极以额定电流甚至过负荷电流进行反送,两极输送的功率基本抵消,电源侧仅需提供15~20万kW的融冰功率即可实现原先需要满功率运行才能实现的熔冰效果。试验期间对直流线路的测温结果也表明了额定电流运行可以有效提高线路的温升,在环境温度10~19℃的情况下,导线平均温升6~8℃。继11月29日龙政直流现场试验取得圆满成功之后,11月30日又成功进行了宜华直流融冰方式试验。公司计划12月2日将对江城直流进行现场融...  相似文献   

3.
三广直流工程融冰运行方式仿真试验   总被引:5,自引:1,他引:4  
马玉龙  徐玲玲  石岩  陶瑜  韩伟  曹镇  杨勇 《电网技术》2008,32(19):22-25
三广直流工程的直流线路必须考虑合适的防冰对策。文章借助于实时数字仿真器与直流控制保护仿真系统模拟了三广直流工程的各种运行方式,提出了采用一极功率正送、另一极功率反送的融冰运行方式。该融冰运行方式不需要改动主接线方式,也无需修改直流控制保护系统的软硬件系统。仿真结果表明,该运行方式可在与交流系统交换有功功率较小的情况下达到融冰的效果,符合冬季调度方式的要求。  相似文献   

4.
为避免接地极线路融冰期间直流输电系统停运,提高直流输电系统可靠性和可用率,对直流输电系统处于双极平衡运行方式、单极金属回线运行方式及同塔双回直流接地极线路接线方式进行研究,发现双极平衡运行时中性母线区域电压接近零,单极金属回线方式运行时接地极线路自动与直流系统隔离。根据以上直流系统固有特性,提出对应直流系统不停电时接地极线路融冰策略。又根据同塔双回直流系统共用接地极的特点,提出三种直流系统不停电方式下接地极线路融冰策略,结合实际工程运行情况可选择相应的融冰模式,所提方案可为后续直流系统接地极线路融冰设计提供参考。  相似文献   

5.
特高压直流输电线路融冰方案   总被引:4,自引:1,他引:3  
针对输电线路覆冰严重影响特高压直流输电可靠性的问题,研究了特高压直流输电线路融冰的2种方案:预防性融冰方案和紧急融冰方案。预防性融冰方案是使特高压直流工程的2个极功率方向相反,可以在直流双极总功率很小的情况下实现较大的线路电流,防止线路覆冰形成;紧急融冰方案是将特高压直流换流器从串联接线方式转换为每站2个换流器并联运行,产生很大的融冰电流,可迅速融化已经形成的覆冰。文中提出了特高压直流工程紧急融冰方案的控制策略,即整流侧并联的2个换流器均处于定电流控制,逆变侧并联的2个换流器一个为定电流控制、另一个为定电压控制,逆变侧定电流换流器的电流参考值为线路电流测量值的一半,达到平均分配电流的目的,定电压状态的换流器控制整个极的直流电压。上述融冰方案的实施将大大降低覆冰对特高压直流输电系统可靠性的影响。  相似文献   

6.
基于12脉动整流技术的500kV输电线路融冰装置实现   总被引:1,自引:0,他引:1  
陆佳政  张允 《高电压技术》2012,38(11):3041-3047
500kV输电线路多采用分裂导线,因此常规的交流融冰方法难以提供足够的融冰电流。为解决500kV覆冰线路的融冰问题,提出了基于12脉动整流技术的高电压、大电流直流融冰方案。并根据500kV输电线路长度的多样性,采用了多档位调压、直流输出方式灵活组合的线路融冰方法。数学理论分析和系统仿真计算表明该方法能够满足不同长度的500kV输电线路的融冰电流需求。根据湖南500kV变电站线路参数,研制了满足15~50km的500kV线路融冰需要的大功率直流融冰装置,并进行了现场运行试验。试验结果为:现场试验波形与设计仿真波形一致,验证了系统模型仿真和理论分析的正确性;500kV线路导线温度从初始31.3°C升至42.9°C,温升11.6°C,温升明显;且直流融冰装置运行正常。试验结果表明,该方法可满足500kV分裂导线的融冰电流需要,电流热效应明显,可较好解决超高压输电线路的覆冰问题。  相似文献   

7.
简述了江西电网开展直流融冰研究的目的及意义,建立了直流融冰临界电流计算模型,分析了线径、冰厚、风速及环境温度对临界融冰电流的影响,并根据江西电网110 kV及以上输电线路参数进行仿真计算,得出江西电网典型110 kV、220 kV及全省网500 kV输电线路融冰电流、功率选择方案。  相似文献   

8.
江西省电网直流融冰计算研究   总被引:3,自引:0,他引:3  
简述了江西电网开展直流融冰研究的目的及意义,建立了直流融冰,临界电流计算模型,分析了线径、冰厚、风速及环境温度对临界融冰电流的影响,并根据江西电网110 kV及以上输电线路参数进行仿真计算,得出江西电网典型110 kV、220 kV及全省网500 kV输电线路融冰电流、功率选择方案.  相似文献   

9.
尹健  马玉龙  蒲莹 《电力建设》2014,35(6):81-85
输电线路覆冰灾害严重影响特高压直流输电系统的正常运行。介绍目前特高压直流输电工程所使用的线路防冰的运行方式。对换流器并联融冰运行方式的效果进行分析计算,提出了融冰运行方式下的控制保护策略,并通过基于实时数字仿真器(real time digital simulator,RTDS)高压直流输电系统仿真平台对融冰运行方式进行试验验证。在锦苏特高压直流输电工程系统调试阶段对换流器并联融冰运行方式进行了现场试验。仿真试验与现场试验的结果均证明换流器并联融冰运行方式可行、有效。  相似文献   

10.
为较大程度提升现有交流线路的输电容量,以缓解输电网输电能力欠缺,潮流拥塞等问题,引入一种交流线路改造成直流线路的技术方案—三极直流。三极直流能够提高线路的传输容量,具有较高的内在冗余度和过负荷能力,并可充分借鉴已有工程的经验,应用前景值得期待。该文介绍了三极直流输电的基本运行原理,总结了其技术和应用上的特点和优势,同时根据不对称电流调节策略,从时序控制、极控制和接地极电流平衡控制3方面提出了三极直流输电特有的协调控制策略。仿真结果表明,所提出的协调控制策略能够使得转换期间直流系统功率传输保持稳定,接地极电流波动控制在较小范围内,有利于交直流系统长期稳定运行。  相似文献   

11.
直流输电系统通常应用于远距离、大容量输电。常规直流输电系统额定输送功率可达到300万千瓦,额定输送电流3000安培。当处于大电流运行时,电流在导线上产生的热量可以缓解线路覆冰,达到一定融冰效果。新型融冰方式在实际工程中得到了验证,丰富了输电线路防冰抗冰反事故技术措施,对今后输电线路防冰抗冰工作具有重要意义,为电网应对低温雨雪冰冻等极端气候增加了新的手段,能有效保障线路安全稳定运行。  相似文献   

12.
为研究高压三极直流输电系统的电流调制运行特性,基于华东电网江苏—上海实际交流线路参数,利用PSCAD/EMTDC电磁暂态仿真软件建立了高压三极直流输电系统仿真模型,对利用交流线路改造后的三极直流输电系统电流调制运行过程中的稳态和暂态特性进行了仿真研究,并与常规直流输电运行特性进行了对比。仿真结果表明:将交流线路改造成高压三极直流输电系统,采用电流调制技术周期性切换导线上的电流定值,可以充分利用导线的发热极限容量,避免中性点流过电流,改造后的高压三极直流输电系统输送总功率从原来的1 200 MW提高到2 499 MW,增容效果显著;高压三极直流输电系统采用直流电流调制运行,各极直流电压、电流及功率特性与常规直流存在较大区别,可以通过改变电流调制比控制直流传输功率,改造后的高压三极直流输电系统谐波特性满足常规直流工程规范要求,高压三极直流系统暂态恢复特性与常规直流基本一致。  相似文献   

13.
向家坝—上海及锦屏—苏南?800 kV特高压直流输电工程融冰运行方式拓扑结构为并联换流器结构,控制策略采用并联多端直流输电(multi-terminal direct current,MTDC)系统的电流裕度控制策略。对特高压直流工程融冰运行方式调试过程中出现的稳态直流电流偏大、极II解锁过程中金属回线纵差保护跳闸(metallic return longitude differential protection,MRLDP)及极I闭锁过程中极II融冰方式跳闸等问题进行了详细分析,提出了融冰运行方式下提高逆变侧换流变分接头档位、禁止MRLDP保护等建议的解决方案。通过EMTDC离线仿真和锦苏直流工程现场调试对解决方案进行了验证。验证结果表明了解决方案的有效性,可为其它特高压直流工程融冰运行方式控制保护系统设计提供参考。  相似文献   

14.
陈蔚东 《电工技术》2021,(3):146-148
常规三端直流输电系统可提供更大的输送容量、更灵活多样化的运行方式,并能实现不同送端送电资源的合理调配.其中直流线路保护是常规三端直流与两端直流保护系统中差异化最大的部分,需适应三端直流输电系统灵活多样的运行方式、故障线路选线等关键问题.探讨禄高肇直流工程直流线路保护整体方案、保护配置及对三端直流输电系统关键问题的适应性分析等内容,最后根据工程情况提出运维建议.  相似文献   

15.
分析比较了直流输电工程大负荷试验的双极运行模式、背靠背模式、融冰模式的优缺点,针对藏中电网"大直流、小电网和弱受端"的特点,指出在目前条件下采用融冰模式是青藏直流比较可行的大负荷试验运行方式。结合此种运行方式,分析了在大负荷试验期间正送极或反送极单极闭锁,一极功率因其他原因导致变化而对藏中电网的频率稳定带来的影响,提出了正送极快速功率回降以及联切非故障极的控制策略,同时针对直流系统的这种控制保护策略提出了安稳系统的切机切负荷策略,2种策略相互配合可以有效保证藏中电网的安全。最后通过仿真系统验证了所提控制策略的有效性。  相似文献   

16.
特高压输电线路直流融冰变流系统设计   总被引:3,自引:0,他引:3       下载免费PDF全文
随着特高压的推广,特高压输电线路的抗冰融冰正成为研究的热点。特高压输电线路由于线径粗、线路长,所需融冰电流与装置容量大,其电流融冰是一个研究的难点。针对特高压输电线路的特点提出了分段直流融冰方法,其将特高压输电线路分成若干段,选取重覆冰区的线路段设置直流融冰点与融冰短路点,可以有效减小融冰装置容量。针对特高压输电线路融冰所需直流融冰装置容量大特点,为了减小融冰装置网侧电流的谐波畸变率,采用24脉波整流变压器+多台整流器并联方式,可以有效减小直流融冰装置对网侧电源的干扰,并可减小输出直流电压纹波因数。最后对所设计的特高压输电线路直流融冰装置进行了仿真研究,采用24脉波整流变压器+多台整流器并联方式后,可以有效消除整流器引起的输入侧电流中5次和7次谐波电流,整流变压器输入侧电流低次谐波总畸变率仅为0.51%,输出直流电压脉波数为24,电压纹波因数仅为0.616。仿真结果证明了所设计特高压直流融冰装置的可行性与正确性。  相似文献   

17.
基于半波长输电系统准稳态模型,建立了特高压半波长与直流混联系统,即通过直流线路异步联网的系统间接入半波长输电线路的系统方程,结合直流线路滤波器投切、送受端无功补偿装置等,研究了半波长输电线路两侧端口处系统电压和无功特性,提出了半波长不同送电功率和直流运行功率变化时基于系统的稳态潮流特性的特高压半波长与直流混联系统的送受端联合电压无功控制方案,分析了不同送电功率和负载功率因数情况下半波长输电线路的电压和电流分布特性,以及直流运行功率变化对半波长输电系统潮流电压的影响。  相似文献   

18.
极端气候条件和输送功率的限制使得直流电流无法满足融冰要求,导致直流输电线路形成覆冰,这将严重影响特高压直流系统的稳定运行。本文结合酒湖直流工程的融冰功能,阐述了特高压直流输电工程中循环阻冰模式和并联融冰模式运行的主接线拓扑结构与特点,提出了循环阻冰模式下两极联跳的策略和并联融冰模式下直流控制保护功能的修改方案。通过RTDS闭环实时数字仿真验证了融冰功能的可行性和有效性,可为特高压直流输电工程融冰运行方式的直流控制保护系统设计提供参考。  相似文献   

19.
给出了架空输电线路直流融冰所涉及的两个重要参数:最小融冰电流和最大允许融冰电流的概念及计算方法。基于有限元法,以500kV架空输电线路常用的LGJ300/40钢芯铝绞线为模型,建立了覆冰导线3D热-电耦合仿真模型,计算出不同气候条件下、不同覆冰厚度的最小融冰电流,以及导线正常运行所允许的最大融冰电流,讨论了各种气候情况下融冰电流调节裕度,总结了最小融冰电流随环境条件和覆冰厚度的变化规律,可为运行人员提供重要的决策依据。  相似文献   

20.
2008年11月29日,国家电网公司在已投运的士500kV三峡送出龙泉一政平直流系统成功进行了超高压直流输电系统融冰方式试验,一直处于研究阶段的融冰运行方式在实际工程得到了验证,填补了国内外超高压直流融冰方式运行的空白,丰富了直流线路防冰抗冰反事故技术措施,对今后直流线路防冰抗冰工作具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号