首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 204 毫秒
1.
Developing highly active, stable and sustainable electrocatalysts for overall water splitting is of great importance to generate renewable H2 for fuel cells. Herein, we report the synthesis of electrocatalytically active, nickel foam-supported, spherical core-shell Fe-poly(tetraphenylporphyrin)/Ni-poly(tetraphenylporphyrin) microparticles (FeTPP@NiTPP/NF). We also show that FeTPP@NiTPP/NF exhibits efficient bifunctional electrocatalytic properties toward both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). Electrochemical tests in KOH solution (1 M) reveal that FeTPP@NiTPP/NF electrocatalyzes the OER with 100 mA cm−2 at an overpotential of 302 mV and the HER with 10 mA cm−2 at an overpotential of 170 mV. Notably also, its catalytic performance for OER is better than that of RuO2, the benchmark OER catalyst. Although its catalytic activity for HER is slightly lower than that of Pt/C (the benchmark HER electrocatalyst), it shows greater stability than the latter during the reaction. The material also exhibits electrocatalytic activity for overall water splitting reaction at a current density of 10 mA cm−2 with a cell voltage of 1.58 V, along with a good recovery property. Additionally, the work demonstrates a new synthetic strategy to an efficient, noble metal-free-coordinated covalent organic framework (COF)-based, bifunctional electrocatalyst for water splitting.  相似文献   

2.
Hydrogen is considered as the most important energy carrier for the future. Water electrolysis is a green method for hydrogen production and simple technology that produces very clean gases. However, the main problems with this method are that this process possesses slow kinetic, consumes many energies and its common electrocatalyst is platinum (Pt) based which is an expensive and rare substance. The use of accessible electrocatalyst materials with new shape or structure, which can reduce the overpotential for the hydrogen evolution reaction (HER) is one of the ways to increase the efficiency of the electrolyzers. Herein, first, a graphite sheet was modified with graphene oxide (GO) and then a hyperbranched structure of gold was electrodeposited on it by controlling the electrodeposition conditions. The electrode surface was characterized by scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FT-IR). The HER performance of the prepared electrodes was evaluated using linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) methods in 0.5 M H2SO4 solution. The as-prepared electrode revealed outstanding HER performance with a near-zero onset overpotential (4.7 mV), overpotential of 44 mV at 10 mA cm−2, a high current density of 127.9 mA cm−2 at 200 mV and also satisfactory stability. Such results suggest that this electrocatalyst is promising for generating clean energy on an industrial scale.  相似文献   

3.
In order to solve the problem of large overpotential in water electrolysis for hydrogen production, transition metal sulfides are promising bifunctional electrocatalysts for hydrogen evolution reaction/oxygen evolution reaction that can significantly reduce overpotential. In this work, Ni3S2 and amorphous MoSx nanorods directly grown on Ni foam (Ni3S2-MoSx/NF) were prepared via one-step solvothermal process, which were used as a high-efficient electrocatalyst for overall water splitting. The Ni3S2-MoSx/NF composite exhibits very low overpotentials of 65 and 312 mV to reach 10 mA cm−2 and 50 mA cm−2 in 1.0 M KOH for HER and OER, respectively. Besides, it exhibits a low Tafel slope (81 mV dec−1 for HER, 103 mV dec−1 for OER), high exchange current density (1.51 mA cm−2 for HER, 0.26 mA cm−2 for OER), and remarkable long-term cycle stability. This work provides new perspective for further the development of highly effective non-noble-metal materials in the energy field.  相似文献   

4.
Using low-cost nonprecious metals to replace Pt as hydrogen evolution reaction (HER) electrocatalyst is promising, but still limited by their efficiency and stability. Herein, with low-cost dicyandiamide and metal salts as precursor, FeCo alloy nanoparticles encapsulated in nitrogenated carbon nanotubes (FeCo-NCNTs) were facially synthesized as efficient HER electrocatalyst. Addition of iron as second element, though not facilitating the formation of carbon nanotube, was utilized to improve the physicochemical properties of metals. Via optimizing the atomic molar ratios of Fe/Co nanoparticles, the optimal Fe0.4Co0.6-NCNTs with thin carbon shell (c.a. 5–10 layer) and equally distribution of embedded alloy nanoparticles was found with outstanding HER activity. To achieve a current density of 10 mA cm−2, only overpotential of 50 mV, 157 mV and 202 mV were needed in acidic (0.5 M H2SO4), alkaline (1 M KOH), and neutral solutions. Its higher electrochemically active surface areas and lower electron transfer resistance may contribute to the excellent electrocatalytic HER. Furthermore, the illustrated current density slightly changed over 20 h, suggesting excellent stability. Hence, the present method provides cost-effective, high efficiency, and stable materials in developing the sustainable energy conversion systems.  相似文献   

5.
Binder-free NiFe-based electrocatalyst with aligned pore channels has been prepared by freeze casting and served as a bifunctional catalytic electrode for oxygen and hydrogen evolution reaction (OER and HER). The synergistic effects between Ni and Fe result in the high electrocatalytic performance of porous NiFe electrodes. In 1.0 M KOH, porous Ni7Fe3 attains 100 mA cm−2 at an overpotential of 388 mV with a Tafel slope of 35.8 mV dec−1 for OER, and porous Ni9Fe1 exhibits a low overpotential of 347 mV at 100 mA cm−2 with a Tafel slope of 121.0 mV dec−1 for HER. The Ni9Fe1//Ni9Fe1 requires a low cell voltage of 1.69 V to deliver 10 mA cm−2 current density for overall water splitting. The excellent durability at a high current density of porous NiFe electrodes has been confirmed during OER, HER and overall water splitting. The fine electrocatalytic performances of the porous NiFe-based electrodes owing to the three-dimensionally well-connected scaffolds, aligned pore channels, and bimetallic synergy, offering excellent charge/ion transfer efficiency and sizeable active surface area. Freeze casting can be applied to design and synthesize various three-dimensionally porous non-precious metal-based electrocatalysts with controllable multiphase for energy conversion and storage.  相似文献   

6.
Using cost-effective materials to replace precious Pt-based hydrogen evolution reaction (HER) catalysts holds great foreground for energy saving and environmental protection. In this work, we successfully prepared an urchin-like Co0.8-Mn0.2-P nanowires array supported on carbon cloth (CC) through a hydrothermal-phosphatization strategy and we also systematically studied its electrocatalytic HER performance. Electrochemical tests demonstrate that our urchin-like Co0.8-Mn0.2-P/CC possesses outstanding HER activity in acidic and alkaline media. In 0.5 M H2SO4, this urchin-like Co0.8-Mn0.2-P/CC only requires an overpotential of 55 mV to drive a current density of 10 mA cm−2, with the Tafel slope of 55.9 mV dec−1. Similarly, when reaching the same current density, just a particularly low overpotential of 61 mV is required with a corresponding Tafel slope of 41.7 mV dec−1 in 1 M KOH. Furthermore, this electrocatalyst exhibits superior stability with 1000 cycles of cyclic voltammetry and 24 h in the I-T test. Such excellent HER catalytic performance can be attributed to the synergistic effect between Co and Mn atoms and high electrochemical active surface area (ECSA). Our work provides a valuable synthesis strategy of non-precious and high HER performance catalytic material.  相似文献   

7.
It is great important to develop and explore a non-precious bifunctional electrocatalyst with high efficiency and good stability for Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER) in alkaline electrolyte. Herein, a three-dimensional (3D) needle-like MoS2/NiS heterostructure supported on Nickel Foam (NF) (MoS2/NiS/NF) is synthesized by a simple hydrothermal method for the first time, which can act as a good bifunctional electrocatalyst for overall water splitting. As expected, the optimal MoS2/NiS/NF exhibits excellent catalytic performance with a low overpotential of 87 and 216 mV at 10 mA cm−2 for HER and OER in 1 M KOH electrolyte, respectively, accompanied by good cycle stability. Furthermore, the MoS2/NiS/NF as bifunctional electrocatalyst in an electrolyzer shows high efficiency with a cell voltage of 1.5 V at 10 mA cm−2, as well as superior durability. The present work may open a new direction to design and develop a non-precious bifunctional electrocatalyst with excellent catalytic activity for water splitting in the future.  相似文献   

8.
An electrocatalyst based on a unique three-dimensional (3D) N-doped porous carbon sheet networks embedded with CoP2 nanoparticles (CoP2@3D-NPC) was synthesized by a facile pyrolysis process as well as an in-situ phosphatization method. The improved CoP2@3D-NPC hybrid materials show excellent electrocatalytic activity toward HER and OER. This material provides a low overpotential of 126 mV at 10 mA cm−2 in 0.5 M H2SO4 and 167 mV at 20 mA cm−2 in 1.0 M KOH for HER with a small Tafel slope value of 59 mV dec−1, respectively. Besides, it is also active for the OER under alkaline conditions. Such a prominent property of the CoP2@3D-NPC electrocatalyst could be attributed to its excellent electrical conductivity of 3D carbon substrate, strong synergistic effect between CoP2 nanoparticles and carbon nanosheet as well as extra active sites created by the N-doped structure.  相似文献   

9.
The growing hydrogen consumption has greatly promoted the development of efficient, stable and low-cost electrocatalysts for the hydrogen evolution reaction (HER). Constructing functional nanostructures is an efficacious strategy to optimize catalytic performance. Herein, we present a feasible route to fabricate distinctive 3D grass-like cobalt phosphide nanocones clad with mini-vesicles on the hierarchically porous Ni foam, which can directly serve as a binder-free electrocatalyst with superior catalytic activity and durability in HER. Thanks to its distinctive 3D microstructure featured with favourable pore-size distribution, abundant active sites provided by mini-vesicles and rapid electron transfer with the assistance of Ni foam, the as-grown grass-like CoP/NF electrocatalyst has shown a favourable overpotential in an acidic solution with an onset overpotential of ∼35 mV, an overpotential of 71 mV at a current density of 10 mA cm−2, reduced by 60 mV in comparison with that realized by urchin-like CoP/NF nanoprickles. Moreover, it has exhibited an excellent HER activity in the alkaline medium, with an overpotential of 117 mV at 10 mA cm−2, a Tafel slope of 63.0 mV dec−1 and a long-term electrochemical durability.  相似文献   

10.
To develop earth-abundant and cost-effective catalysts for overall water splitting is still a major challenge. Herein, a unique “raisins-on-bread” Ni–S–P electrocatalyst with NiS and Ni2P nanoparticles embedded in amorphous Ni(OH)2 nanosheets is fabricated on Ni foam by a facile and controllable electrodeposition approach. It only requires an overpotential of 120 mV for HER and 219 mV for OER to reach the current density of 10 mA cm−2 in 1 M KOH solution. Employed as the anode and cathode, it demonstrates extraordinary electrocatalytic overall water splitting activity (cell voltage of only 1.58 V @ 10 mA cm−2) and ultra-stability (160 h @ 10 mA cm−2 or 120 h @50 mA cm−2) in alkaline media. The synergetic electronic interactions, enhanced mass and charge transfers at the heterointerfaces facilitate HER and OER processes. Combined with a silicon PV cell, this Ni–S–P bifunctional catalyst also exhibits highly efficient solar-driven water splitting with a solar-to-hydrogen conversion efficiency of 12.5%.  相似文献   

11.
Searching for efficient, stable and low-cost nonprecious catalysts for oxygen and hydrogen evolution reactions (OER and HER) is highly desired in overall water splitting (OWS). Herein, presented is a nickel foam (NF)-supported MoS2/NiFeS2 heterostructure, as an efficient electrocatalyst for OER, HER and OWS. The MoS2/NiFeS2/NF catalyst achieves a 500 mA cm−2 current density at a small overpotential of 303 mV for OER, and 228 mV for HER. Assembled as an electrolyzer for OWS, such a MoS2/NiFeS2/NF heterostructure catalyst shows a quite low cell voltage (≈1.79 V) at 500 mA cm−2, which is among the best values of current non-noble metal electrocatalysts. Even at the extremely large current density of 1000 mA cm−2, the MoS2/NiFeS2/NF catalyst presents low overpotentials of 314 and 253 mV for OER and HER, respectively. Furthermore, MoS2/NiFeS2/NF shows a ceaseless durability over 25 h with almost no change in the cell voltage. The superior catalytic activity and stability at large current densities (>500 mA cm−2) far exceed the benchmark RuO2 and Pt/C catalysts. This work sheds a new light on the development of highly active and stable nonprecious electrocatalysts for industrial water electrolysis.  相似文献   

12.
Development of an inexpensive electrocatalyst for hydrogen evolution (HER) and oxygen evolution reactions (OER) receives much traction recently. Herein, we report a facile one-pot ethyleneglycol (EG) mediated solvothermal synthesis of orthorhombic Co2P with particle size ~20–30 nm as an efficient HER and OER catalysts. Synthesis parameters like various solvents, temperatures, precursors ratios, and reaction time influences the formation of phase pure Co2P. Investigation of Co2P as an electrocatalyst for HER in acidic (0.5 M H2SO4) and alkaline medium (1.0 M KOH), furnishes low overpotential of 178 mV and 190 mV, respectively to achieve a 10 mA cm?2 current density with a long term stability and durability. As an OER catalyst in 1.0 M KOH, Co2P shows an overpotential of 364 mV at 10 mA cm?2 current density. Investigation of Co2P NP by XPS analysis after OER stability test under alkaline medium confirms the formation of amorphous cobalt oxyhydroxide (CoOOH) as an intermediate during OER process.  相似文献   

13.
Water electrolysis to generate hydrogen (H2) and oxygen (O2) was a sustainable alternative for clean energy in the future but remained challenging. Herein, we fabricated a nanoneedle-like CoP core coated by a P,N-codoped carbon shell (CoP@PNC@NF). The hierarchical structure, unique nanoneedle-like morphology, CoP core, and P,N-codoped carbon shell were responsible for the high electrocatalytic activity. Electrocatalytic tests demonstrated that CoP@PNC@NF displayed low overpotentials of 137.6 and 148.4 mV, as well as Tafel slopes of 59.89 and 56.40 mV dec−1 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively, at 10 mA cm−2 in 1.0 M KOH. The bifunctional electrocatalyst CoP@PNC@NF also exhibited a low cell voltage of 1.458 V to yield 10 mA cm−2 in the two-electrode system and could maintain the activity for 50 h. The Faradaic efficiencies of CoP@PNC@NF for both HER and OER were nearly 100%. The result outperformed the precious-metal-based electrocatalyst apparatus (RuO2||Pt/C) and other carbon-coated transition-metal phosphides (TMPs). This work paved the way for the rational design of carbon shell-coated TMPs with low energy barriers for converting and storing electrochemical energy.  相似文献   

14.
Constructing efficient bifunctional electrocatalysts for both cathode and anode is of great importance for obtaining green hydrogen by water splitting. Herein, sulfuration of hierarchical Mn-doped NiCo LDH heterostructures (Mn–NiCoS2/NF) is constructed as a bifunctional electrocatalyst for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) via a facile hydrothermal-annealing strategy. Mn–NiCoS2/NF shows an overpotential of 310 mV at 50 mA cm−2 for OER and 100 mV at 10 mA cm−2 for HER in 1.0 M KOH. Moreover, only 1.496 V@10 mA cm−2 is required for overall water splitting by using Mn–NiCoS2/NF as catalyst dual electrodes in a two-electrode system. The excellent performance of Mn–NiCoS2/NF should be attributed to the ameliorative energy barriers of adsorption/desorption for HO/H2O through the modification of electronic structure of NiCo basal plane by Mn-doping and the acceleration of water dissociation steps via rich delocalized electron inside sulfur vacancies. The construction of hierarchical Mn–NiCoS2/NF heterostructures provides new prospects and visions into developing efficient-advanced electrocatalysts for overall water splitting.  相似文献   

15.
Extremely low content of Ruthenium (Ru) nanoparticles were loaded on the carbon black (Ru/C) via reducing Ru ions with silicon monoxide. The obtained Ru/C nanocomposites exhibit an exciting electrochemical catalytic activity for hydrogen evolution reaction (HER) in the oxygen-free 0.5 M H2SO4 medium. The optical one (Ru/C-2) with a low Ru amount of 2.34% shows higher activity than previously reported Ru-based catalysts. The overpotential at 10 mA cm−2 is 114 mV and the Tafel slope is 67 mV·dec−1. Ru/C-2 catalyst also has good stability. The overpotential that afford the current density of 10 mA cm−2 of 20 wt% Pt/C increased 92 mV while that of Ru/C-2 only increased 50 mV after a 30,000 s chronopotentiometry test. Furthermore, the mass activity of Ru/C-2 catalyst is even better than that of the commercial 20 wt% Pt/C when the overpotential is larger than 0.18 V. This silicon monoxide-mediated strategy may open a new way for the fabrication of high performance electrocatalysts.  相似文献   

16.
Designing highly efficient and durable metal-free electro-catalysts replacing the precious (non)noble metals is crucial to the future hydrogen economy and various renewable energy conversion and storage devices. Herein, we report an efficient low-cost nanoporous activated carbon sheets (NACS) with hierarchical pore architecture from Indian Ooty Varkey (IOV) food waste for oxygen evolution (OER) and hydrogen evolution reactions (HER) by following “waste to wealth creation” strategy. Characterization of NACS carbo-catalyst reveals the presence of pyridinic-nitrogen inherited by self-doping of N from the biomass with high BET surface area (1478.0 m2 g-1). As an electrocatalyst in alkaline medium, it exhibits low-onset potential (1.36 V vs. RHE), an overpotential (η10) of 0.34 V at 10.0 mA cm−2 with a small Tafel value (43 mV dec−1), and good stability towards OER compared to Pt or Ir commercial catalysts. Tested as HER catalyst, it displays an impressive HER activity with a low-onset potential of −0.085 V (vs. RHE), and overpotential (η10) of 0.38 V at 10.0 mA cm−2 with a small Tafel slope of 85 mV dec−1.  相似文献   

17.
The development of cost-effective, highly efficient and stable electrocatalysts for alkaline water electrolysis at a large current density has attracted considerable attention. Herein, we reported a one-dimensional (1D) porous Mo2C/Mo2N heterostructured electrocatalyst on carbon cloth as robust electrode for large current hydrogen evolution reaction (HER). The MoO3 nanobelt arrays and urea were used as the metal and non-metal sources to fabricate the electrocatalyst by one-step thermal reaction. Due to the in-situ formed abundant high active interfaces and porous structure, the Mo2C/Mo2N electrocatalyst shows enhanced HER activity and kinetics, as exemplified by low overpotentials of 54, 73, and 96 mV at a current density of 10 mA cm?2 and small Tafel slopes of 48, 59 and 60 mV dec?1 in alkaline, neutral and acid media, respectively. Furthermore, the optimal Mo2C/Mo2N catalyst only requires a low overpotential of 290 mV to reach a large current density of 500 mA cm?2 in alkaline media, which is superior to commercial Pt/C catalyst (368 mV) and better than those of recently reported Mo-based electrocatalysts. This work paves a facile strategy to construct highly efficient and low-cost electrocatalyst for water splitting, which could be extended to fabricate other heterostructured electrocatalyst for electrocatalysis and energy conversion.  相似文献   

18.
The development of multifunctional electrocatalysts is crucial for enhancing the efficiency of electrochemical conversion in energy devices. Here we have synthesized TiO2-x nanosheets (NSs) supported metallic Pd nanoparticles (Pd/TiO2-x NSs) as an electrocatalyst using a simple impregnation process. High electrochemical surface areas (ECSAs) and strong metal support interactions (SMSI) of the electrocatalyst showed improved ORR performance throughout a wide pH range under ambient conditions. The outstanding durability of the catalyst was proven by the square-wave potential cycling experiment at 60 °C. Additionally, it was shown that Pd/TiO2-x NSs showed improved HER activity and stability in 0.5 M H2SO4. The catalyst had an overpotential of 19.5 mV for the 10 mA cm−2 and a low Tafel slope of 41 mV dec−1. The catalyst also showed higher stability for about 30 h in HER performance. This work will help in rationally building nanostructured electrocatalysts loaded on carbon-free support for efficient electrochemical energy storage devices.  相似文献   

19.
Electrochemical water splitting plays an important role in alternative energy studies, since it is highly efficient and environment-friendly. Accordingly, it is an ideal way of providing alternative to meet the urgent need of finding sustainable and clean energy. This study presents the fabrication of CoP attached on multilevel N-doped CNT/graphene (CoP–CNT/NG) hybrids. The multilevel carbon structure can enhance electrical conductivity efficiently and increase the reaction active area immensely. The obtained electrocatalyst exhibits great electronic conductivity (17.8 s cm−1) and HER activity with low overpotential (155 mV at 10 mA cm−2), low Tafel slope (69.1 mV dec−1) in 0.5 M H2SO4. In addition, the CoP–CNT/NG displays prominent electrochemical durability after 18 h.  相似文献   

20.
Hydrogen evolution reaction (HER) plays a critical role in electrocatalysis, and developing highly active, cheap and stable Pt-free catalysts for HER in alkaline media is imperative for conversion of renewable energy into hydrogen fuels via photo/electrochemical water splitting. Herein, we report a facile strategy to fabricate a high-performance Ru-NMCNs-T electrocatalyst (T is the annealing temperature) for HER, which consist of both Ru nanoparticles and single Ru atoms well dispersed on nitrogen-doped mesoporous carbon nanospheres (NMCNs). Ru-NMCNs-500 exhibited the best HER performance in the series. To achieve a current density of 10 mA cm−2 in 1 M KOH, it only needs an overpotential of 28 mV with a small Tafel slope of 35.2 mA dec−1, superior to the commercial Pt/C catalyst. It also exhibited exceedingly improved long-term stability than Pt/C. This study can open a new avenue for preparing Ru-based catalysts toward HER under extreme alkaline conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号