首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The clamping pressure of polymer electrolyte membrane fuel cells for vehicle applications should be typically high enough to minimize contact resistance. However, an excessive compression pressure may cause a durability problem. In this study, the effects of gas diffusion layer (GDL) structure on the open circuit voltage (OCV) and hydrogen crossover have been closely examined. Results show that the performances of fuel cells with GDL-1 (a carbon fiber felt substrate with MPL having rough surface) and GDL-3 (a carbon fiber paper substrate with MPL having smooth surface) are higher than that with GDL-2 (a carbon fiber felt substrate with MPL having smooth surface) under low clamping torque conditions, whereas when clamping torque is high, the GDL-1 sample shows the largest decrease in cell performance. Hydrogen crossover for all GDL samples increases with the increase of clamping torque, especially the degree of increase of GDL-1 is much greater than that of the other two GDL samples. The OCV reduction of GDL-1 is much greater than that of GDL-2 and GDL-3. It is concluded that the GDL-3 is better than the other two GDLs in terms of fuel cell durability, because the GDL-3 shows the minimum OCV reduction.  相似文献   

2.
We show analytically that the water-crossover flux through the membrane used for direct methanol fuel cells (DMFCs) can be in situ determined by measuring the water flow rate at the exit of the cathode flow field. This measurement method enables investigating the effects of various design and geometric parameters as well as operating conditions, such as properties of cathode gas diffusion layer (GDL), membrane thickness, cell current density, cell temperature, methanol solution concentration, oxygen flow rate, etc., on water crossover through the membrane in situ in a DMFC. Water crossover through the membrane is generally due to electro-osmotic drag, diffusion and back convection. The experimental data showed that diffusion dominated the total water-crossover flux at low current densities due to the high water concentration difference across the membrane. With the increase in current density, the water flux by diffusion decreased, but the flux by back convection increased. The corresponding net water-transport coefficient was also found to decrease with current density. The experimental results also showed that the use of a hydrophobic cathode GDL with a hydrophobic MPL could substantially reduce water crossover through the membrane, and thereby significantly increasing the limiting current as the result of the improved oxygen transport. It was found that the cell operating temperature, oxygen flow rate and membrane thickness all had significant influences on water crossover, but the influence of methanol concentration was negligibly small.  相似文献   

3.
In proton exchange membrane fuel cells (PEMFCs), a hydrophobic micro-porous layer (MPL) is usually placed between the catalyst layer (CL) and the conventional gas diffusion layer (GDL) to relieve the flooding. In this paper, a pore network model is developed to investigate how the MPL structure affects the liquid and oxygen transport properties of the bilayer gas diffusion material (GDM) consisting of fine MPL and coarse GDL. The regular three-dimensional pore network constructed to represent the bilayer GDM are composed of the cubic pores that are connected by the narrow throats of square cross section. Based on this model, the capillary pressure, liquid permeability, and oxygen effective diffusivity as a function of GDM liquid saturation are determined. Parameter studies are performed to elucidate the influences of MPL thickness and of MPL crack width. Also analyzed are the liquid distributions in different structural GDMs at the moment of breakthrough. The results reveal a liquid saturation jump at the MPL/GDL interface in the plain bilayer GDM, but a liquid saturation drop in the defective bilayer GDM.  相似文献   

4.
Anode water removal (AWR) is studied as a diagnostic tool to assess cathode gas diffusion layer (GDL) flooding in PEM fuel cells. This method uses a dry hydrogen stream to remove product water from the cathode, showing ideal fuel cell performance in the absence of GDL mass transfer limitations related to water. When cathode GDL flooding is limiting, the cell voltage increases as the hydrogen stoichiometry is increased. Several cathode GDLs were studied to determine the effect of microporous layer (MPL) and PTFE coating. The largest voltage gains occur with the use of cathode GDLs without an MPL since these GDLs are prone to higher liquid water saturation. Multiple GDLs are studied on the cathode side to exacerbate GDL flooding conditions to further confirm the mechanism of the AWR process. Increased temperature and lower cathode RH allow for greater overall water removal so the voltage improvement occurs faster, though this leads to quicker membrane dehydration.  相似文献   

5.
The mass transport characteristics of a gas diffusion layer (GDL) predominantly affect the performance of a proton exchange membrane (PEM) fuel cell. However, studies examining the transient response related to the GDL are insufficient, although the dynamic behavior of a PEM fuel cell is an important issue. In this study, the effects of the design of a micro porous layer (MPL) on the transient response of a PEM fuel cell are investigated. The MPL slurry density and multiple functional layers are treated as the variable design parameter. The results show that the transient response is determined by the capillary pressure gradient through the GDL. The trade-off relation for the PEM fuel cell performance under low and high humidity conditions due to the hydrophobic GDL is mitigated by designing a reverse capillary pressure gradient in the MPL.  相似文献   

6.
The dynamic behavior of liquid water transport through the gas diffusion layer (GDL) of the proton exchange membrane fuel cell is studied with an ex-situ approach. The liquid water breakthrough pressure is measured in the region between the capillary fingering and the stable displacement on the drainage phase diagram. The variables studied are GDL thickness, PTFE/Nafion content within the GDL, GDL compression, the inclusion of a micro-porous layer (MPL), and different water flow rates through the GDL. The liquid water breakthrough pressure is observed to increase with GDL thickness, GDL compression, and inclusion of the MPL. Furthermore, it has been observed that applying some amount of PTFE to an untreated GDL increases the breakthrough pressure but increasing the amount of PTFE content within the GDL shows minimal impact on the breakthrough pressure. For instance, the mean breakthrough pressures that have been measured for TGP-060 and for untreated (0 wt.% PTFE), 10 wt.% PTFE, and 27 wt.% PTFE were 3589 Pa, 5108 Pa, and 5284 Pa, respectively.  相似文献   

7.
In proton exchange membrane fuel cell (PEMFC), a hydrophobic micro-porous layer (MPL) is usually placed between catalyst layer (CL) and gas diffusion layer (GDL) to reduce flooding. Recent experimental studies have demonstrated that liquid water saturation in GDL is drastically decreased in the presence of MPL. However, theoretical studies based on traditional continuum two-phase flow models suggest that MPL has no effect on liquid water distribution in GDL. In the present study, a pore network model with invasion percolation algorithm is developed and used to investigate the impacts of the presence of MPL on liquid water distribution in GDL from the viewpoint at the pore level. A uniform pressure and uniform flux boundary conditions are considered for liquid water entering the porous layer in PEMFC. The simulation results reveal that liquid water saturation in GDL is reduced in the presence of MPL, but the reduction depends on the condition of liquid water entering the porous layer in PEMFC.  相似文献   

8.
A two-dimensional two-phase steady state model of the cathode of a polymer electrolyte membrane fuel cell (PEMFC) is developed using unsaturated flow theory (UFT). A gas flow field, a gas diffusion layer (GDL), a microporous layers (MPL), a finite catalyst layer (CL), and a polymer membrane constitute the model domain. The flow of liquid water in the cathode flow channel is assumed to take place in the form of a mist. The CL is modeled using flooded spherical agglomerate characterization. Liquid water is considered in all the porous layers. For liquid water transport in the membrane, electro-osmotic drag and back diffusion are considered to be the dominating mechanisms. The void fraction in the CL is expressed in terms of practically achievable design parameters such as platinum loading, Nafion loading, CL thickness, and fraction of platinum on carbon. A number of sensitivity studies are conducted with the developed model. The optimum operating temperature of the cell is found to be 80-85 °C. The optimum porosity of the GDL for this cell is in the range of 0.7-0.8. A study by varying the design parameters of the CL shows that the cell performs better with 0.3-0.35 mg cm−2 of platinum and 25-30 wt% of ionomer loading at high current densities. The sensitivity study shows that a multi-variable optimization study can significantly improve the cell performance. Numerical simulations are performed to study the dependence of capillary pressure on liquid saturation using various correlations. The impact of the interface saturation on the cell performance is studied. Under certain operating conditions and for certain combination of materials in the GDL and CL, it is found that the presence of a MPL can deteriorate the performance especially at high current density.  相似文献   

9.
An ultrathin layer of hydrophilic titanium dioxide (TiO2) is coated on the gas diffusion layer (GDL) to enhance the performance of a proton exchange membrane fuel cell (PEMFC) at low relative humidity (RH) and high cell temperature. Both of the modified and unmodified GDLs are characterized using contact angles, and the cell performance is evaluated at various RHs and cell temperatures. It is found that the modified GDL, which contains a hydrophilic TiO2 layer between the microporous layer (MPL) and the gas diffusion-backing layer (GDBL), exhibits better self-humidification performance than a conventional GDL without the TiO2 layer. At 12% RH and 65 °C cell temperature, the current density is 1190 mA cm−2 at 0.6 V, and it maintains 95.8% of its initial performance after 50 h of continuous testing. The conventional GDL, however, exhibits 55.7% (580 mA cm−2) of its initial performance (1040 mA cm−2) within 12 h of testing. The coated hydrophilic TiO2 layer acts as a mini humidifier retaining sufficient moisture for a PEMFC to function at low humidity conditions.  相似文献   

10.
This research investigates the optimal polytetrafluoroethylene (PTFE) content in the cathode gas diffusion layer (GDL) by evaluating the effect of compression on the performance of a proton exchange membrane (PEM) fuel cell. A special test fixture is designed to control the compression ratio, and thus the effect of compression on cell performance can be measured in situ. GDLs with and without a microporous layer (MPL) coating are considered. Electrochemical impedance spectroscopy (EIS) is used to diagnose the variations in ohmic resistance, charge transfer resistance and mass transport resistance with compression ratio. The results show that the optimal PTFE content, at which the maximum peak power density occurs, is about 5 wt% with a compression ratio of 30% for a GDL without an MPL coating. For a GDL with an MPL coating, the optimal PTFE content in the MPL is found to be 30% at a compression ratio of 30%.  相似文献   

11.
Flooding of the membrane electrode assembly (MEA) and dehydrating of the polymer electrolyte membrane have been the key problems to be solved for polymer electrolyte membrane fuel cells (PEMFCs). So far, almost no papers published have focused on studies of the liquid water flux through differently structured gas diffusion layers (GDLs). For gas diffusion layers including structures of uniform porosity, changes in porosity (GDL with microporous layer (MPL)) and gradient change porosity, using a one-dimensional model, the liquid saturation distribution is analyzed based on the assumption of a fixed liquid water flux through the GDL. And then the liquid water flux through the GDL is calculated based on the assumption of a fixed liquid saturation difference between the interfaces of the catalyst layer/GDL and the GDL/gas channel. Our results show that under steady-state conditions, the liquid water flux through the GDL increases as contact angle and porosity increase and as the GDL thickness decreases. When a MPL is placed between the catalyst layer and the GDL, the liquid saturation is redistributed across the MPL and GDL. This improves the liquid water draining performance. The liquid water flux through the GDL increases as the MPL porosity increases and the MPL thickness decreases. When the total thickness of the GDL and MPL is kept constant and when the MPL is thinned to 3 μm, the liquid water flux increases considerably, i.e. flooding of MEA is difficult. A GDL with a gradient of porosity is more favorable for liquid water discharge from catalyst layer into the gas channel; for the GDLs with the same equivalent porosity, the larger the gradient is, the more easily the liquid water is discharged. Of the computed cases, a GDL with a linear porosity 0.4x + 0.4 is the best.  相似文献   

12.
The gas diffusion layer (GDL) is composed of a substrate and a micro-porous layer (MPL), and is treated with polytetrafluoroethylene (PTFE) to promote water discharge. Additionally, the MPL mainly consists of carbon black and PTFE. In other words, the optimal design of these elements has a dominant effect on the polymer electrolyte membrane fuel cell (PEMFC) performance. For the GDL, it is crucial to prevent water flooding, and the water flux within the GDL is strongly affected by the capillary pressure gradient. In this study, the PEMFC performance was systematically investigated by varying the substrate PTFE content, MPL PTFE content, and MPL carbon loading per unit area. The effects of each experimental variable on the PEMFC performance and especially on the capillary pressure gradient were quantitatively analyzed when the GDLs were manufactured by the doctor blade manufacturing method. The experimental results indicated that as the PTFE content of the anode and cathode GDL increased, the PEMFC performance deteriorated due to the deformation of the porosity and tortuosity of the GDL. Additionally, the PEMFC performance improved as the MPL PTFE content of the cathode GDL increased at low relative humidity (RH), but the PEMFC performance tendency was reversed at high RH. Further, the MPL carbon loading of 2 mg/cm2 demonstrated the best performance, and the advantages and disadvantages of the MPL carbon loading were identified. In addition, the effects of each experimental variable on liquid water, water vapor, and gas permeability were investigated.  相似文献   

13.
The water management role of a microporous layer (MPL) in a polymer electrolyte membrane fuel cell (PEMFC) is demonstrated experimentally by visualizing the drainage behaviors of a non-wetting fluid through multiple porous layers. An intermediate layer inserted between a fine layer and a coarse layer is observed to reduce the number of (the non-wetting fluid) breakthrough sites towards the coarse layer by merging many transport paths. Then, the reduced number of the breakthrough sites decreases the non-wetting fluid saturation in the coarse layer by minimizing capillary fingering process. These results clearly demonstrate the water management role of an MPL: An MPL reduces the liquid water breakthrough into a gas diffusion layer (GDL) by merging many paths from a catalyst layer (CL), and thereby reduces the liquid water saturation in the GDL.  相似文献   

14.
Understanding the thermal properties of the microporous layer (MPL) is critical for accurate thermal analysis and improving the performance of proton exchange membrane (PEM) fuel cells operating at high current densities. In this study, the effective through-plane thermal conductivity and contact resistance of the MPL have been investigated. Gas diffusion layer (GDL) samples, coated with 5%-wt. PTFE, with and without an MPL are measured using the guarded steady-state heat flow technique described in the ASTM standard E 1225-04. Thermal contact resistance of the MPL with the iron clamping surface was found to be negligible, owing to the high surface contact area. Effective thermal conductivity and thickness of the MPL remained constant for compression pressures up to 15 bar at 0.30 W/m°K and 55 μm, respectively. The effective thermal conductivity of the GDL substrate containing 5%-wt. PTFE varied from 0.30 to 0.56 W/m°K as compression was increased from 4 to 15 bar. As a result, GDL containing MPL had a lower effective thermal conductivity at high compression than the GDL without MPL. At low compression, differences were negligible. The constant thickness of the MPL suggests that the porosity, as well as heat and mass transport properties, remain independent of the inhomogeneous compression by the bipolar plate. Despite the low effective thermal conductivity of the MPL, thermal performance of the GDL can be improved by exploiting the excellent surface contact resistance of the MPL.  相似文献   

15.
The effects of polytetraflouroethylene (PTFE) content in the gas diffusion layer (GDL) on the performance of PEMFCs with stainless-steel bipolar plates are studied under various operation conditions, including relative humidity, cell temperature, and gas pressure. The optimal PTFE content in the GDL strongly depends on the cell temperature and gas pressure. Under unpressurized conditions, the best cell performance was obtained by the GDL without PTFE, at a cell temperature of 65 °C and relative humidity (RH) of 100%. However, under the conditions of high cell temperature (80 °C), low RH (25%) and no applied gas pressure, which is more desirable for fuel cell vehicle (FCV) applications, the GDL with 30 wt.% PTFE shows the best performance. The GDL with 30 wt.% PTFE impedes the removal of produced water and increases the actual humidity within the membrane electrode assembly (MEA). A gas pressure of 1 bar in the cell using the GDL with 30 wt.% PTFE greatly improves the performance, especially at low RH, resulting in performance that exceeds that of the cell under no gas pressure and high RH of 100%.  相似文献   

16.
This study focused on novel cathode structures to increase power generation and organic substrate removal in microbial fuel cells (MFCs). Three types of cathode structures, including two-layer (gas diffusion layer (GDL) and catalyst layer (CL)), three-layer (GDL, micro porous layer (MPL) and CL), and multi-layer (GDL, CL, carbon based layer (CBL) and hydrophobic layers) structures were examined and compared in single-chamber MFCs (SCMFCs). The results showed that the three-layer (3L) cathode structures had lower water loss than other cathodes and had a high power density (501 mW/m2). The MPL in the 3L cathode structure prevented biofilm penetration into the cathode structure, which facilitated the oxygen reduction reaction (ORR) at the cathode. The SCMFCs with the 3L cathodes had a low ohmic resistance (Rohmic: 26-34 Ω) and a high cathode open circuit potential (OCP: 191 mV). The organic substrate removal efficiency (71-78%) in the SCMFCs with 3L cathodes was higher than the SCMFCs with two-layer and multi-layer cathodes (49-68%). This study demonstrated that inserting the MPL between CL and GDL substantially enhanced the overall electrical conduction, power generation and organic substrate removal in MFCs by reducing water loss and preventing biofilm infiltration into the cathode structure.  相似文献   

17.
In this study, the effects of adding a microporous layer (MPL) as well as the impact of its physical properties on polymer electrolyte fuel cell (PEMFC) performance with serpentine flow channels were investigated. In addition, numerical simulations were performed to reveal the effect of relative humidity and operating temperature. It is indicated that adding an extra between the gas diffusion layer (GDL) and catalyst layer (CL), a discontinuity in the liquid saturation shows up at their interface because of differences in the wetting properties of the layers. In addition, results show that a higher MPL porosity causes the liquid water saturation to decrease and the cell performance is improved. A larger MPL thickness reduces the cell performance. The effects of MPL on temperature distribution and thermal transport of the membrane prove that the MPL in addition to being a water management layer also improves the thermal management of the PEMFC.  相似文献   

18.
The focus of this paper is to study the flow crossover between two adjacent flow channels in a proton exchange membrane (PEM) fuel cell with serpentine flow field design in bipolar plates. The effect of gas diffusion layer (GDL) deformation on the flow crossover due to the compression in a fuel cell assembly process is particularly investigated. A three-dimensional structural mechanics model is created to study the GDL deformation under the assembly compression. A three-dimensional PEM fuel cell numerical model is developed in the aforementioned deformed domain to study the flow crossover between the adjacent channels in the presence of the GDL intrusion. The models are solved in COMSOL Multiphysics—a finite element-based commercial software package. The pressure, velocity, oxygen mass fraction and local current density distribution are presented. A parametric study is conducted to quantitatively investigate the effect of the GDL’s transport related parameters such as porosity and permeability on the flow crossover between the adjacent flow channels. The polarization curves are also examined with and without the assembly compression considered. It is found that the compression effect is evident in the high current density region. Without considering the assembly compression, the fuel cell model tends to over-predict the fuel cell’s performance. The proposed method to simulate the crossover with the deformed computational domain is more accurate in predicting the overall performance.  相似文献   

19.
Water transport through the gas diffusion media of a proton exchange membrane fuel cell (PEMFC) was investigated with a focus on the role of the microporous layer (MPL) coated on the cathode gas diffusion layer (GDL). The capillary pressure of the MPL and GDL, which plays a significant role in water transport, is derived as a function of liquid saturation using a pore size distribution (PSD) model. PSD functions are derived with parameters that are determined by fitting to the measured total PSD data. Computed relations between capillary pressure and liquid saturation for a GDL and a double-layered GDL (GDL + MPL) show good agreement with the experimental data and proposed empirical functions. To investigate the role of the MPL, the relationship between the water withdrawal pressure and liquid saturation are derived for a double-layered GDL. Water transport rates and cell voltages were obtained for various feed gas humidity using a two-dimensional cell model, and are compared with the experimental results. The calculated results for the net drag with application of the capillary pressure derived from the PSD model show good agreement with the experimental values. Furthermore, the results show that the effect of the MPL on the cell output voltage is significant in the range of high humidity operation.  相似文献   

20.
Takemi Chikahisa 《传热工程》2013,34(2-3):258-265
In polymer electrolyte membrane (PEM) fuel cells, the generated water transfers from the catalyst layer to the gas channel through microchannels of different scales in a two phase flow. It is important to know details of the water transport phenomena to realize better cell performance, as the water causes flooding at high current density conditions and gives rise to startup problems at freezing temperatures. This article presents specifics of the ice formation characteristics in the catalyst layer and in the gas diffusion layer (GDL) with photos taken with an optical microscope and a cryo scanning electron microscope (cryo-SEM). The observation results show that cold starts at –10°C result in ice formation at the interface between the catalyst layer and the microporous layer (MPL) of the GDL, and that at –20°C most of the ice is formed in the catalyst layer. Water transport phenomena through the microporous layer and GDL are also a matter of interest, because the role of the MPL is not well understood from the water management angle. The article discusses the difference in the water distribution at the interface between the catalyst layer and the GDL arising from the presence of such a microporous layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号