首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the charging characteristics of alumina in vacuum with varying surface roughness, and the electric field distribution. The charging on the alumina surface in vacuum is, in general, strongly influenced by field electron emission (FEE) and secondary electron emission avalanche (SEEA). We varied the surface roughness and the electric field distribution on the alumina surface in order to control the FEE and the SEEA. Under these conditions, we measured the 2-dimensional distribution of surface charging potential on the alumina surface. From the measurement results, we quantitatively discussed charge polarity and charge density on the surface for various types of electric field distributions. Finally, we successfully propose a concept of a charging control technique on the alumina insulator in vacuum for the improvement of electrical insulation performance on the alumina surface.  相似文献   

2.
This paper describes charging characteristics on a dielectric surface in vacuum by electron irradiation and field emission by a triple junction under negative and positive DC HV applications. The authors measured the 2-D distribution of electrostatic charging on a dielectric surface in situ. Experimental results revealed that the negative charge distribution caused by the electron beam had a conical shape over the whole surface. On the other hand, for a triple junction, it was an acute distribution around the triple junction. Moreover, they quantitatively investigated the difference of the 2-D charging distribution, using certain shape parameters, between the two charging processes mentioned above. In addition, they examined the time decay characteristics of the surface potential on the dielectric in vacuum  相似文献   

3.
We have investigated charging and flashover characteristics of a polymeric or glass insulator exposed to AC voltage in vacuum in order to develop compact and reliable high voltage VCBs (vacuum circuit breakers). This paper focuses on charging characteristics of a cylindrical model insulator. The charging of an insulator is investigated using an electrostatic probe that measures the electric field near the triple junction on the grounded electrode. This method allows a time-resolved measurement of the charging process. The insulator was made of borosilicate, fused quartz or polymetyl methacrylate, and was in the shape of a right cylinder with 10 mm in thickness. It has been clarified that the charging is characterized by three sequential states; initiation, quasi-stable and stable states, and that the polarity of the charge is positive for these states irrespective of the voltage phase. The charging characteristics with AC voltage are compared to our previous results with DC voltage excitation. We find that the charge magnitude at the stable state coincides with that obtained by DC. The electric field on the grounded electrode, and therefore the charge magnitude, decreases with the surface roughness, and decreases as the insulation strength is increased. A computer simulation has been conducted to investigate the quasi-stable state, which clarifies that the transition in surface charge distribution being synchronous to the voltage phase is responsible for causing the quasi-stable state.  相似文献   

4.
真空中高压电极结构的单次脉冲沿面闪络耐压研究   总被引:1,自引:0,他引:1  
电极作为高压绝缘子的加载对象,在电真空器件中有着至关重要的作用,合理的电极结构设计可以有效地提高高压器件的沿面耐压。笔者从实际的应用出发,针对几种新型电极结构进行了电场仿真和实验耐压实验,给出了不同电极情况下,氧化铝陶瓷的耐压结果。结果表明,新型电极结构能有效减弱氧化铝陶瓷三结合处的电场强度,并在一定程度上提高绝缘子耐压能力,相对于平板电极,其平均最高耐压提高了55%。  相似文献   

5.
By using an electrostatic probe located close to the triple junction on the cathode surface, we have conducted real-time observations of the change in electric field due to surface charging of an insulator in vacuum. A cylindrical sample made of polymethylmethacrylate (PMMA) or Al2O3 has been exposed to HVDC. An axisymmetric simulation based on the secondary electron emission electron avalanche (SEEA) theory has been performed. The measured results agreed with the simulation concerning the polarity of the accumulated charge as well as the field strength. The simulation also predicts the inception of charging at a voltage well below the measured flashover voltage. These results clearly support the SEEA theory as a macroscopic mechanism of surface charging of an insulator in vacuum  相似文献   

6.
Surface charge distributions of disk type aluminas held between a backside electrode (alumina holder) and a needle electrode to be excited by an impulse voltage (rise time 64 μs, wave tail 700 μs) were measured. The measurement of surface charge distribution on the whole surface area of alumina YSA998 and UHA99 after impulse voltage application revealed that the surface charging can be initiated either from the anode or from the cathode triple junction. The charging initiated from the anode triple junction (for positive polarity) produced positive charge at the anode region and the density is dependent on the applied voltage, while the charging initiated from the cathode triple junction region (for negative polarity) produced negative charge around the cathode region. For positive polarity, the critical values of charge density to the flashover for alumina YSA998 and UHA98 are 5.70 and 17.2 μC/m2, respectively  相似文献   

7.
真空中典型沿面绝缘结构的电场分析   总被引:1,自引:0,他引:1  
在高电压作用下,由复合绝缘介质构成的沿面绝缘结构的耐电强度远低于其绝缘材料自身的击穿场强,这一现象与其电场的分布特点密切相关。笔者针对真空中平行平板、平面和棒-板电极系统等多种典型沿面绝缘结构的电场分布进行了仿真计算,探讨了电极-介质结合处的间隙、圆台形绝缘子的圆锥角角度、平面电极的高度以及绝缘子介电常数等因素对电场分布的影响。仿真结果表明,接触间隙的存在导致局部电场的加强和电场方向的变化,间隙宽度越大、高度越小,间隙处电场畸变越大;圆锥角越大,绝缘子的介电常数越大,场强畸变也越大。该分析结果有利于真空中沿面绝缘结构的设计。  相似文献   

8.
This paper describes the temporal characteristics of surface charging on a cylindrical insulator made of polymethylmethacrylate (PMMA) resin or alumina ceramic. The insulator is subjected to a dc voltage step or to a trapezoidal voltage in vacuum. The charging is observed by using an electrostatic probe located at the surface of the cathode close to the triple junction where the insulator, cathode and vacuum meet. The probe signal shows a step increase associated with the charging. The interval between the voltage rise and the charging, which is defined as the delay time of charging in this paper, ranges from 10 -5 s to 10 s depending on the material and the applied voltage. It also depends on the condition of the insulator-cathode interface, the electrical prestress and the surface roughness of the insulator. Among these factors, the surface roughness has the largest effect on the delay time. Two-dimensional Monte Carlo simulation based on the secondary emission electron avalanche model has been performed to analyze the charging progress. During the delay period, positive charge accumulates on the surface of the insulator near the cathode, which further accelerates the charging  相似文献   

9.
This paper describes a simple and reliable method of improving the surface insulation strength of a spacer used in vacuum. The method is to roughen the spacer surface to an average roughness R/sub a/ higher than 1 or 2 /spl mu/m. The material of the spacer examined is SiO/sub 2/, PMMA, PTFE or Al/sub 2/O/sub 3/ and their shape is a right cylinder with 10 mm in height and 54 mm in diameter. The spacer is subjected to a ramped DC voltage and its surface charging is observed by using an electrostatic probe embedded in the cathode. It has been found that R/sub a/ decisively affects the charging, which decreases as R/sub a/ increases. Increasing R/sub a/ larger than about 2 /spl mu/m suppresses the charging until a higher applied voltage is reached, thus improving the insulation property.  相似文献   

10.
氧化铝陶瓷以其良好的绝缘性能广泛应用于高压真空器件,起到绝缘和支撑作用,但氧化铝陶瓷的沿面闪络现象严重制约了其耐压性能。分析了阴极金属-陶瓷-真空三结合处电场局部增强的原因,对阴极金属电极结构对柱状氧化铝陶瓷三结合处电场分布影响进行了仿真和单次脉冲耐压试验研究,给出了不同电极情况下,氧化铝陶瓷的耐压结果。结果表明,弯曲电极结构能有效减弱氧化铝陶瓷三结合处的电场强度,并且随着金属电极弯曲长度的增加而明显减小;相对于平板电极,弯曲电极的平均最高耐压提高了45%。  相似文献   

11.
Investigations have been carried out on the dielectric performance of the ceramic (high-purity alumina, Al/sub 2/O/sub 3/) surface in vacuum interrupters after switching. In order to examine the influence of the shielding on the protection of the ceramic surface against metal vapor condensation different types of vacuum interrupters (VIs) have been tested: VIs with and without shielding. Additionally, two contact materials CuCr: 75:25 wt% and WCAg: 56:4:40 wt% have been investigated to compare the adhesion of different metal vapors to alumina ceramic surfaces. After having performed a HV conditioning of the VIs, dc arcs with arbitrary arcing times were triggered between the contacts simulating the generation of metal vapor during high current interruption and load break switching. Between the arcing tests the insulation levels of all VIs have been tested by means of HV ac source. Afterwards the VIs were opened and the microstructure of the metallic condensate on the inner ceramic surface was analyzed by means of scanning electron microscopy (SEM) and atomic force microscopy (AFM). The integral chemical composition of the metallic film was investigated by inductive coupled plasma (ICP).  相似文献   

12.
采用光学方法研究陶瓷绝缘材料的沿面闪络特性   总被引:2,自引:2,他引:0  
对比研究了真空中交流电压下采用和未采用真空溅射金属电极的氧化铝陶瓷材料,在沿面闪络发生前不同的表面发光特性。基于固体的能带理论,提出了2类试品在金属电极-介质的界面处不同的能量状态分布模型;并在此基础上同时考虑电荷注入复合和场致电子发射对发光的影响,解释了2类试品发光的差异性,指出了采用和未采用真空溅射金属电极的氧化铝陶瓷存在不同的沿面闪络起始机理及发展过程。  相似文献   

13.
新型可加工陶瓷真空中冲击闪络特性的研究   总被引:1,自引:1,他引:0  
为了克服氧化铝陶瓷存在加工难度及脆性大等缺点,研制成功了一种新型低熔点可加工微晶玻璃陶瓷,它具有良好的力学、热学和可加工性能,但需进一步了解其电气性能。因此,测量了这种新型陶瓷的介电特性;考察了其在真空中脉冲电压下的沿面耐电特性;对比分析了氧化铝陶瓷和可加工陶瓷的表面耐电性能及不同添加剂成分与不同比例的添加剂对可加工陶瓷表面耐电性能的影响。结果发现,这种可加工陶瓷符合电工陶瓷的标准,其表面耐电性能优于氧化铝陶瓷,可替代现有的陶瓷材料,并获得了较好的配方设计。  相似文献   

14.
针对真空中复合绝缘体系的耐电强度受到沿面闪络现象限制问题,综述了国内外真空沿面闪络相关的研究进展。研究发现,真空中固体绝缘介质的沿面闪络性能受老练方式、介质的表面特性及体特性、介质表面沉积电荷、绝缘体系的电场分布等因素影响。机理分析认为真空中的沿面闪络现象实质上是高场下电荷在气-固界面的输运行为,其过程涉及到介质表层中的电荷捕获/脱陷特性、二次电子的发射特性、以及气相中的气体(或解吸附气体)分子的碰撞电离/电子倍增等过程,沿面闪络的发展和形成是以上几个因素相互耦合作用结果。基于以上分析及认识,认为可以从改变材料表面特性及体特性和改善整个绝缘体系的电场分布方面,来提升真空沿面闪络电压。  相似文献   

15.
The phenomenon of accumulated charges on solid insulator surfaces is one of the critical parameters to consider at the insulation design stage, for AC electric power equipment as well as for DC equipment, so it is important to investigate the characteristics and predominant factors underlying various charging mechanisms. Several researches related to this theme have been reported, but independently, and cross-sectional comparison and evaluation from a unified viewpoint are meaningful. In this paper, the resistance of solid insulator is first discussed, showing that the resistances found by diverse measurements are in a fairly good agreement under similar conditions of the temperature and electric field. Next, three kinds of electric charging mechanisms, i.e. volume conduction, surface conduction and electric field emission are characterized in terms of the time constant, applied voltage and charge distribution. Then, eight cases of recent measurements on the charging time are investigated and their charging mechanisms are classified. Electric field emissions are likely to occur with model spacers made in routine GIS manufacturing process at the electric field level used. Further, three examples in cases with metallic particles are introduced, of simulating charge from edge on the tank, spacer surface charging phenomena, and influence of charge on spacer surface flashover. It is expected that this paper wilt be helpful for understanding charging phenomena e.g. on insulation spacers in gas insulated switchgears  相似文献   

16.
徐建源  任春为  王博 《高压电器》2006,42(5):324-327
应用ANSYS软件分析计算了支柱式12kV户外真空断路器真空灭弧室外表面的电场强度,得出在不同填充材料、气泡和不同外绝缘材料时的电场强度及分布曲线;分析得出不同条件对真空灭弧室外表面电场强度的影响,用以提高户外真空断路器灭弧室外表面的绝缘性能。  相似文献   

17.
This paper shows how to determine the electrode contour with the best insulation performance on the basis of an area effect and a volume effect in the breakdown field strength. Previous electric field optimization techniques have provided us only with an optimum electric field distribution, For the design of power apparatus insulation, we have to consider the dielectric breakdown characteristics rather than the electric field distribution. As a first step, we developed a new optimization technique which enables us to obtain an optimum electrode contour with the highest breakdown strength while taking into account the area and volume effects of breakdown strength of insulating media. From the results, we have confirmed that the proposed optimization method improved the breakdown voltage more than did the electric field optimization. This leads to an effective insulation design of electric power apparatus  相似文献   

18.
This paper briefly introduces our recent results on high field vacuum insulation relevant to vacuum microelectronics. It addresses the key factors that contribute to the failure of the vacuum gap insulation. Approaches to the development of specific solutions to improve the vacuum gap breakdown voltages are presented. Solutions to alleviate the edge breakdown effect in the thin-film vacuum gap and to inhibit the formation of electrical activity in the spacer triple junction area were proven to be very effective in improving the vacuum insulation performance of vacuum microelectronics. The influence of the presence of an electron beam on the plain-vacuum-gap insulation is also reported.  相似文献   

19.
The insulation performance and the flashover mechanism of a vacuum gap bridged by an insulator in the shape of a conical frustum have been studied. The cone angle of the insulator is varied from 0 to 45 deg and the thickness of the insulator is varied from 5 to 15 mm. The gap is subjected to a lightning impulse voltage of 2/50 μs. The insulation performance is investigated by observing the ratio of the flashover voltage of the bridged gap to that of the gap without insulators. The flashover mechanism is investigated by observing the distribution of traces on the cathode surface due to flashovers and by analyzing the electric field near the insulator-cathode junction. Charging of the insulator due to electron collisions on its surface is considered in this analysis. As a result, it is found that the ratio is greater than 90 percent for a cone angle greater than a critical one when the top of the frustum is subjected to the positive impulses. It is found also that the trace distribution is related closely to the insulation performance.  相似文献   

20.
The partial discharge (PD) inception characteristics are studied in liquid nitrogen (LN/sub 2/)/polypropylene laminated paper (PPLP/sup /spl reg//) composite insulation system for high temperature superconducting (HTS) cable. Experimental results revealed that the magnitude of the initial PD increased as the PD inception electric field strength was increased, because the injected energy increased. Initial PD was generated at the first and third quadrant of applied AC voltage phase. The probability of initial PD at the positive and negative voltage phase was almost the same. The reason is because liquid nitrogen is a nonpolar molecule and we used symmetric electrode configuration with uniform electric field distribution. Finally, it was pointed out that PD inception electric field strength (PDIE) depended on the volume of the butt gap because of the increasing probability of weak points of electrical insulation, and PDIE linearly decreased with increasing stressed volume of the butt gap in the log-log scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号