首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
利用WDW3100电子万能试验机对铸态AZ31镁合金试样进行预压缩量0%和3%处理,并采用新型的锥台强剪切挤压变形方法将AZ31镁合金铸棒挤压成板材。通过金相显微镜、拉伸性能测试及断口扫描分析研究预压缩变形对锥台剪切变形镁合金的微观组织与力学性能的影响。结果表明:3%预变形处理对铸态镁合金植入大量的孪晶组织,为后续动态再结晶提供充足的形核点,且镁合金在变形过程中受到剧烈强剪切变形,使得挤压成形板发生了充分的动态再结晶,晶粒细化至4.5μm。预压缩3%镁合金经锥台剪切变形后,伸长率高达23.6%,屈服强度和抗拉强度高达280.4 MPa和225.3 MPa。与预压缩0%的挤压镁合金相比,断裂伸长率提高幅度高达91%,屈服强度和抗拉强度略有降低。挤压温度对镁合金组织性能有重要的影响,预压缩3%的镁合金经290℃锥台剪切变形后,获得均匀细小的晶粒组织,具有优良的综合力学性能。  相似文献   

2.
挤锻复合成形工艺对AZ81镁合金组织和性能的影响   总被引:3,自引:1,他引:2  
阐述了一种挤锻复合成形工艺.对AZ81镁合金半连续铸坯固溶处理后挤压,并在400℃下以60%的锻压比锻压,研究了其组织和性能变化.结果表明,挤压态AZ81镁合金具有较细的晶粒组织,第二相Mg17Al12被破碎,以弥散状沿晶界分布,个别呈流线形.其屈服强度、抗拉强度和伸长率分别较铸态提高了69.9%、63.2%和164.6%;锻压后,晶粒更加细化均匀,脆性相Mg17Al1被再次粉碎,部分融入晶粒内部;其各项力学性能得到较大提高,其屈服强度、抗拉强度和伸长率分别达到229 MPa、337 MPa和15.5%,较挤压态又分别提高了9.6%、8.7%和22.3%;晶粒细化和第二相Mg17Al12分布对AZ81镁合金的性能有着重要影响;从拉伸断口金相SEM上可以看出,铸态AZ81镁合金经挤压和锻压后,断裂单元变小,断口上的韧性部分增多.  相似文献   

3.
Mg-Cd-Nd-Zn-Zr合金的组织与力学性能研究   总被引:2,自引:1,他引:1  
通过显微组织观察和力学性能测试等手段研究了Mg-Cd-Nd-Za-Zr合金的组织和力学性能.结果表明:Cd和Nd能细化镁合金晶粒,铸态平均晶粒尺寸细化到35 μm左右.挤压态平均晶粒尺寸细化到约10 μm;Mg-Cd-Nd-Zn-Zr镁合金经挤压变形后综合力学性能提高,抗拉强度和屈服强度分别提高到334和330 MPa,伸长率达到15%.  相似文献   

4.
提出了等通道螺旋转角挤压(equal channel helix angular extrusion,ECHE)变形方法,采用Deform-3D平台的有限元模拟、OM、SEM、TEM、拉伸试验等方法,研究了ECHE制造AZ31镁合金轻质螺栓坯料的挤压工艺、温度场、合金流动情况、组织和性能。结果表明:在变形温度为380℃,挤压速度为3mm·s-1时,合金变形均匀,不易出现挤压缺陷;等通道螺旋转角挤压变形可以显著细化AZ31镁合金晶粒;其挤压过程中晶粒细化机制为晶粒破碎和动态再结晶;挤压后的平均晶粒尺寸为3~5μm,且合金晶粒大小均匀;力学性能较铸态大幅度提高,室温抗拉强度和屈服强度分别由209和104MPa提高到286和165MPa,延伸率由11%提高到26.4%,拉伸断口呈现为韧窝断裂和准解理断裂的混合特征。  相似文献   

5.
通过向AZ31合金中加入不同含量的CaO,在均匀化处理后进行热挤压,研究CaO添加量对挤压态AZ31镁合金微观组织和力学性能的影响。结果表明:CaO与AZ31熔体发生反应,并生成Al2Ca相;CaO的添加有效细化AZ31镁合金挤压前后的微观组织;合金的力学性能随CaO含量的升高而逐渐提高,当CaO添加量为1%时,屈服强度和抗拉强度分别达到219 MPa和311 MPa,与AZ31合金相比分别提高了28.6%和17.3%。添加CaO带来的再结晶程度升高和晶粒细化,是强度改善的主要原因。  相似文献   

6.
为了获得高性能镁合金板材,采用正向热挤压将铸态AZ31镁合金坯料挤压成2 mm厚的板材,研究了其显微组织演变及力学性能等。结果表明:铸态AZ31镁合金坯料挤压成板材后可以获得均匀细小的再结晶晶粒组织,其力学性能(屈服强度、抗拉强度、伸长率)大幅度提升。铸态AZ31镁合金坯料在400、450℃挤压成板材后,平均晶粒尺寸可由390μm分别细化至3.9、5.6μm。挤压后的AZ31镁合金板材展现出典型的(0001)基面织构,大部分晶粒的c轴垂直于板材表面。铸态AZ31镁合金的力学性能较差,而AZ31镁合金挤压板材在三个拉伸方向上均展现出优越的力学性能。随挤压温度的升高,AZ31镁合金挤压板材晶粒长大且显微组织不均匀,综合力学性能也有所下降。  相似文献   

7.
为了改善铸态AZ80镁合金组织和性能,对均匀化处理的铸态AZ80镁合金进行了多向锻造试验,并采用金相分析、EBSD (电子背散射衍射)分析和拉伸试验等方法,进行了显微组织和力学性能的测试与分析。结果表明:与锻造前相比,多向锻造后的AZ80镁合金的平均晶粒尺寸减小了约76μm、抗拉强度增加了66 MPa、屈服强度增加了79 MPa、断后伸长率增大了6%,断裂方式从脆性断裂转变为韧性断裂,多向锻造后合金内部晶粒为细小的等轴晶。因此,多向锻造显著地改善了AZ80镁合金的内部组织、提高了AZ80镁合金的力学性能。  相似文献   

8.
利用电子显微镜、扫描电镜、拉伸试验机等研究了不同挤压温度对AZ91镁合金显微组织与力学性能的影响。结果表明:在320~410℃,AZ91镁合金挤压后发生了不同程度的动态再结晶。与铸态合金相比,不同温度挤压后AZ91镁合金的强度和伸长率均明显提高。370℃挤压的AZ91镁合金晶粒最为细小。390℃挤压的镁合金动态再结晶较为充分。410℃挤压的试样组织晶粒变得粗大且不均匀。370℃挤压的AZ91镁合金综合力学性能最好,抗拉强度、屈服强度、伸长率分别达到346、253 MPa和12.6%。  相似文献   

9.
对AZ80镁合金管材的挤压工艺进行研究,对挤压前后材料的组织与力学性能进行分析。结果表明,经过热挤压后,镁合金的晶粒细化,力学性能有较大提高。晶粒尺寸由挤压前铸态的28μm细化到挤压后的4μm,抗拉强度由162 MPa提高到265 MPa,屈服强度由74 MPa提高到180 MPa,伸长率由4%提高到14%。随着挤压比的增加,晶粒细化明显,伸长率和屈服强度增加。对于挤压AZ80镁合金管材,合理的挤压工艺参数:挤压比为18.2,坯料温度为390℃,模具预热温度为360℃,挤压速度为1 mm/s,凹模锥半角为60°-70°。  相似文献   

10.
研究了铸态AZ91D镁合金在等径角挤压(Equal Channel Angular Extrusion,ECAE)后的室温力学性能和微观组织特征。在力学性能方面,铸态AZ91D镁合金经过1道次ECAE变形后,室温力学性能(屈服强度、抗拉强度、延伸率、弹性模量)由86.3 MPa,146.3 MPa,1.84%,42.5 GPa分别提高到144.1MPa,222.8 MPa,3.49%,47.7 GPa;2道次后变为109.1 MPa,268.3 MPa,4.48%,48.9 GPa。在微观组织方面,挤压1道次后,由于枝状晶粒在等径道弯角处滑动和转动时发生破碎,AZ91D镁合金的晶粒和黑色共晶相Mg17Al12沿挤压方向拉长为条带状;挤压2道次后,黑色共晶相开始部分回溶,共晶相有所减少且呈非连续分布。  相似文献   

11.
采用原位合成-半固态搅拌铸造法制备了TiB2/AZ31镁基复合材料,研究了热挤压对TiB2/AZ31镁基复合材料组织和力学性能的影响。结果表明:热挤压不仅能显著细化合金组织,而且能有效改善TiB2颗粒分布的均匀性。与铸态AZ31镁合金相比,铸态TiB2/AZ31镁基复合材料的硬度、抗拉强度都有一定程度的提高。经过热挤压后,TiB2/AZ31镁基复合材料的硬度和抗拉强度分别比基体合金提高了126.2%和98.8%,达到950 MPa和322 MPa。磨损表面形貌显示,TiB2颗粒的引入以及对TiB2/AZ31镁基复合材料进行热挤压,都可有效地提高材料的耐磨性。  相似文献   

12.
变形态Mg-Nd合金的组织转变和拉伸性能特征   总被引:4,自引:0,他引:4  
研究不同变形条件对Mg-2.2Nd-0.5Zn-0.5Zr合金室温拉伸性能和组织的影响.经过不同条件的热挤压变形后,该合金的强度和延性都有不同程度的增加,屈强比从0.58提高到0.87左右.固定变形温度时,强度随变形速率增大而降低,延性反之.固定变形速率时,升高变形温度则强度降低,延性增加.弥散于晶界的Mg9Nd化合物细化了晶粒.变形态Mg-Nd合金的高温超塑拉伸研究发现,375℃是该合金的最佳超塑变形温度,应变速率在1×10-2s-1时,延伸率达到329%;当变形速率提高到2×10-2s-1时,该合金的延伸率仍可达到213%.分析不同真应变下的组织发现,在变形初期发生动态再结晶,晶粒得到破碎而变得细小,随着变形程度的增加,晶粒长大程度较小.在变形后的断口形貌中发现,Mg-Nd合金的超塑变形机制为晶界滑移控制下的孔洞连接协调机制.  相似文献   

13.
The effect of extrusion ratio on microstructure and mechanical properties of as-extruded Mg-6Sn-2Zn-1Ca (TZX621) (mass fraction, %) alloy was investigated. It is found that incomplete dynamic recrystallization (DRX) took place in as-extruded TZX621 alloy. As the extrusion ratio was increased from 6 to 16, both fraction of un-DRXed grains and average size of DRXed grains in as-extruded TZX621 alloy decreased and the basal texture was weakened. Coarse CaMgSn phase was broken into particles and fine Mg2Sn phase precipitated from α-Mg matrix during hot extrusion. Yield strength, ultimate tensile strength and elongation of as-extruded TZX621 alloy with extrusion ratio of 16 reached 226.9 MPa, 295.6 MPa and 18.1%, which were improved by 36.0%, 17.7% and 13.5%, respectively, compared to those of as-extruded TZX621 alloy with extrusion ratio of 6.  相似文献   

14.
1 INTRODUCTIONMagnesiumalloyshavemanyadvantagessuchaslowdensity ,highspecificstrength ,goodelectromag neticshieldingcharacteristics ,excellentcastabilityandmachinabilityetc .Magnesiumisanabundantele mentsinceabout 1.93% (massfraction)ofearthcrustconsistofmagne…  相似文献   

15.
赵玉华  王猛 《铸造》2012,61(7):758-763
采用挤压铸造和挤压变形工艺制备了Mg-Bi二元合金,通过金相显微镜分析,室温拉伸性能测试,X射线衍射分析,SEM和EDS等手段,研究了Mg-Bi合金在铸态和热挤压态的显微组织和力学性能.结果表明:铸态Mg-Bi合金随着Bi含量的增加,伸长率逐渐降低,抗拉强度逐渐增加,当Bi含量达10wt.%以上,抗拉强度降低;Mg-Bi合金铸锭经450℃、3h保温,挤压比为12.76热挤压后,随Bi含量的增加,抗拉强度与伸长率均逐渐增加,当Bi含量达12wt.%时,抗拉强度为219.68 MPa,伸长率为13.43%,Bi含量继续增加,合金抗拉强度及伸长率呈下降趋势;挤压态Mg-Bi合金的力学性能是晶粒细化与Mg3Bi2综合作用的结果,当Bi含量大于12wt.%后,形成较多粗大的Mg3Bi2相是导致合金力学性能下降的主要原因.  相似文献   

16.
The effect of extrusion ratio on microstruetures and mechanical properties of magnesium alloy AZ91D extruded tube at 430℃ has been studied. After the evolution of microstracture and mechanical properties of AZ91D during extrusion were studied, the following parameters were obtained: tensile strength reached the climax value of 306.9MPa and elongation peak value of 10.1% at an extrusion ratio of 7.125, and with the increase of the extrusion ratio to 7.45, yield strength reached a top value of 285.795MPa with decreased tensile strength and elongation. It was concluded that mechanical properties of magnesium alloys AZ91D could be enhanced by adjusting the extrusion ratio near recrystallization.  相似文献   

17.
挤压比对Mg—Zn—Zr—RE合金组织和性能的影响   总被引:1,自引:0,他引:1  
研究了不同挤压比对铸态Mg-5.4Zn-0.3Zr-0.98RE镁合金微观组织和力学性能的影响。研究表明,当挤压比较小时,微观组织呈现出粗晶和细晶组成的混晶组织;随着挤压比增加到16,微观组织发生完全再结晶,获得均匀、细小的再结晶组织。动态再结晶是铸态镁合金Mg-5.4Zn-0.3Zr-0.98RE晶粒细化的机制。在挤压温度为250℃,挤压比为16时,合金获得的力学性能最好,抗拉强度为345MPa,屈服强度为223MPa,断后伸长率为21.4%。  相似文献   

18.
The microstructure revolution and mechanical properties of as-extruded and peak-aged Mg–6Zn–1Mn– 4Sn–0.5Ca (ZMT614–0.5Ca) alloy were studied by OM, SEM, TEM, hardness testing and tensile testing. The results showed that the as-cast ZMT614–0.5Ca alloy mainly consisted of α-Mg, Mg–Zn and CaMgSn phase. The hot extrusion process effectively refined the microstructure and led to a completely dynamic recrystallized microstructure. The average grain size of as-extruded alloy was ˜4.85 μm. After solution treatment, remained CaMgSn with high melting point played a significant role in pinning effect and impeding the migration of grain boundary. After aging treatment, peak-aged ZMT614–0.5Ca alloy exhibited a good combination of strength and ductility, with yield strength, ultimate tensile strength and elongation being 338 MPa, 383 MPa and 7.5%, respectively. The yield strength of the alloy increased significantly by around 36% compared with that in as-extruded condition, which should be attributed to the precipitation strengthening of β' phase.  相似文献   

19.
The AZ31 Mg alloys were processed by 6% pre-compression and frustum shearing extrusion at various temperatures, and the microstructure, texture and mechanical properties of the resulting alloys are systematically investigated. The results show that the grain size monotonically increases from 6.4 to 12.6 lm and the texture intensity increases from 6.7 to 9.6with the increase in the extrusion temperature. The combining effect of the pre-twinning and the frustum shearing deformation is found to contribute to the development of the weak basal texture in Mg alloys. The Mg alloy sheet produced at the extrusion temperature of 563 K exhibits excellent mechanical properties. The yield strength, ultimate tensile strength and elongation for the extruded alloys are 189.6 MPa, 288.4 MPa and 24.9%, respectively. Such improved mechanical properties are comparable or even superior to those of the alloys subjected to other deformation techniques, rendering the pre-compression and frustum shearing extrusion a promising way for further tailoring properties of Mg alloys.  相似文献   

20.
研究AZ31合金在非对称挤压腔循环膨胀挤出(CEE-AEC)过程中的显微组织、织构演化和力学性能.结果表明,在CEE-AEC过程中发生连续动态再结晶(CDRX)和不连续动态再结晶(DDRX).经过3道次变形后,变形试样的显微组织得到细化,非对称型腔区域合金的平均晶粒尺寸为6.9μm.随着道次的增加,基体织构的最大强度增...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号