首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 455 毫秒
1.
反应自生Al2O3-Al3Ti-Al 复合材料的抗弯曲性能   总被引:7,自引:1,他引:6       下载免费PDF全文
将压力铸造(Squeeze-Casting) 与燃烧合成(Combustion-Synthesis) 相结合, 利用TiO2与Al 之间的反应, 成功地制备了金属相Al 含量不同的Al2O3-Al3Ti-Al 原位复合材料系列。运用三点弯曲方法测试了复合材料的抗弯曲强度和弹性模量。结果表明: 复合材料具有较高的弯曲强度(410~ 490M Pa) 和弹性模量(156~ 216GPa) , 随着金属相Al 含量的增加, 弯曲强度开始有所升高,当A l 体积百分数超过40% 后便明显下降。而弹性模量始终呈降低趋势, 复合材料的高强度源于反应生成细小的Al2O3颗粒及Al3Ti 相的增强作用。   相似文献   

2.
穆阳  李皓 《材料研究学报》2019,33(11):865-873
用有机先驱体浸渍裂解(PIP)法制备SiCf/BN/SiC复合材料,研究了微米Al2O3粉体对其弯曲强度、高温介电和高温吸波性能的影响。结果表明,随着Al2O3的含量从5%提高到20%,SiCf/BN/SiC的弯曲强度呈现出先升高后降低的趋势,最大值达到295 MPa;随着温度的升高复合材料复介电常数的实部和虚部均逐渐增大,加入Al2O3填料能降低高温复介电常数及其随温度增大的幅度。无填料复合材料的室温和高温吸波性能均较差,而添加20% Al2O3的复合材料在8.2~12.4 GHz频段的室温反射损耗均低于-8 dB,且适用厚度为3.0~3.5 mm,700℃时厚度为3.0 mm的反射损耗为-5~-8 dB,在实际工程应用中具有较强的可设计性。  相似文献   

3.
采用3种不同形貌的Al2O3原料对注凝成型制备ZrO2/Al2O3(ZTA)陶瓷工艺中悬浮体的流变性能进行了研究。以低毒的单体N,N-二甲基丙烯酰胺(DMAA)制备了ZrO2/Al2O3坯体和陶瓷。讨论了3种不同形貌的Al2O3原浆料的分散剂用量、球磨时间和固含量对浆料流变性的影响。Al2O3粉体呈扁平状有利于降低浆料的黏度,Al2O3粉体呈棒状对生坯强度的提高有利。制得的3种ZrO2/Al2O3坯体颗粒间结合紧密,抗弯强度分别达到21.45,19.87,25.90 MPa。Al2O3粉体呈颗粒状有利于最终陶瓷力学性能的提高,陶瓷的抗弯强度及断裂韧性分别为680 MPa和7.49 MPa·m1/2,453.1 MPa和6.8 MPa·m1/2,549.4 MPa和6.34 MPa·m1/2。  相似文献   

4.
采用叠层模压法制备了纳米Al2O3-碳纤维织物多尺度增强聚酰胺基(nano Al2O3-CFF/PA6)复合材料层压板。借助场发射扫描电子显微镜(FESEM)、同步热分析仪(TGA/DSC)和FTIR,研究了模压温度、压力和纳米Al2O3加入量等因素对nano Al2O3-CFF/PA6复合材料力学性能的影响。研究表明:在模压温度为230℃、模压压力为3 MPa和保压时间为15 min时,CFF/PA6层压板的弯曲强度为250.3 MPa,层间剪切强度为87.6 MPa,平行层厚方向的冲击强度为41.2 MPa,垂直层厚方向为9.6 MPa。当基体中的Al2O3含量达到6wt%时,nano Al2O3-CFF/PA6层压板的弯曲强度为387.6 MPa,层间剪切强度为35.7 MPa,平行和垂直层厚方向的冲击强度分别为80.3 MPa和25.6 MPa。  相似文献   

5.
用机械化学及热压烧结方法成功制备了高致密Ni-20Fe/ Al2O3 纳米复合材料。通过X2ray、FE-SEM、力学性能、磁性能测试, 结果表明, 复合后材料断裂韧性从纯α2Al2O3 相的4. 7 MPa·m1/2 提高到6. 2 MPa·m1/2(19 % (Ni-20Fe) / Al2O3 ) , 断裂方式有沿晶断裂和穿晶断裂两种。当Ni-20Fe 合金的体积百分数达到19 %时, 复合材料的饱和磁化强度达33 emu/ g , 矫顽力为200 Oe , 且在低于500 ℃的情况下, 矫顽力基本不随温度而变, 具有良好的磁热稳定性。   相似文献   

6.
Al2O3/6-6-3青铜复合材料的制备及性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用粉末冶金法制备出Al2O3/青铜复合材料, 研究了烧结温度、Al2O3颗粒尺寸、含量及表面状态对复合材料性能的影响。结果表明, 采用二次压制与烧结工艺制备的复合材料的组织致密,Al2O3颗粒分布均匀, 综合性能优于6-6-3青铜材料。Al2O3颗粒的化学包覆处理可以使复合材料的性能进一步提高。   相似文献   

7.
以AlB2和SiC颗粒填充酚醛树脂作为基体,高硅氧纤维作为增强体,制备了高硅氧纤维/可瓷化酚醛树脂复合材料。研究了不同添加量的AlB2颗粒对高硅氧纤维/可瓷化酚醛树脂复合材料常温和1200℃裂解产物性能的影响,并分析了AlB2颗粒对其裂解产物的增强机制。结果表明:随着AlB2颗粒的添加,高硅氧纤维/可瓷化酚醛树脂复合材料常温下的弯曲强度逐渐减小,但其1200℃裂解产物的弯曲强度先增大后减小。当AlB2颗粒与酚醛树脂的质量比为12%时,裂解产物的弯曲强度提高最为显著,相比未添加AlB2颗粒的复合材料,其裂解产物的弯曲强度提高了16.4%。AlB2颗粒在1200℃有氧环境中反应生成由B2O3 、Al2O3和Al20B4O36组成的共熔体,填充了树脂基体裂解产生的孔隙,明显减少复合材料裂解产物的结构缺陷,阻止内部材料进一步氧化,提高了裂解产物的力学性能。   相似文献   

8.
采用真空条件,用CuO作氧化剂,在一定的温度下使Cu-Al合金内氧化,获得Al2O3/Cu表面复合材料。金相分析发现,在较低温度下内氧化,表面复合层中Al2O3颗粒晶界处多于晶内;在较高温度下内氧化,复合层中Al2O3颗粒呈弥散状分布;表面复合层厚度随Al含量的增加而减薄,显微硬度随Al含量的增加而升高。   相似文献   

9.
利用Al-La2O3的原位反应和粉末冶金工艺制备出(Al11La3+Al2O3)/Al复合材料。结果表明,高能球磨和高温烧结促进了原位反应,使Al与La2O3充分反应并制备出致密无缺陷的材料。对其微观组织的分析表明,微米Al11La3和纳米Al2O3颗粒均匀分散于基体之中。这种复合材料的室温抗拉强度为328 MPa、延伸率为10.5%,350℃的高温抗拉强度为119 MPa、延伸率为10.2%。与传统Al-Cu-Mg-Ag和Al-Si-Cu-Mg耐热铝合金相比,本文的制备的(Al11La3+Al2O3)/Al复合材料其高温抗拉强度提高了大约20%。这种材料的室温强化机制源于Al11La3和Al  相似文献   

10.
将纳米ZnO粉末和Al粉球磨后冷压成Al-ZnO预制块,然后将其加到Al-Zn-Cu熔体中进行Al-ZnO原位反应,制备出纳米Al2O3颗粒增强Al-Zn-Cu基复合材料。能谱面扫描分析和透射电镜观察结果表明,复合材料由纳米Al2O3颗粒和Al2Cu析出相两种颗粒/析出相组成。纳米Al2O3颗粒通过异质形核和晶界钉扎,细化了Al-Zn-Cu合金晶粒组织和Al2Cu析出相。原位纳米Al2O3颗粒的生成提高了基体合金的拉伸性能,轧制+热处理使Al2O3/Al-Zn-Cu复合材料的拉伸强度比相同处理的基体合金提高约100%,总伸长率提高约98%。  相似文献   

11.
8 mol.% yttria-doped cubic zirconia (8Y-CSZ)/AI2O3 composites containing 0-30 vol.% Al2O3 particles were fabricated by sintering, followed by hot isostatic pressing (post-HIPing). All composites were densified to at least 99·5% of the theoretical density by post-HIPing. The bending strength of composites sintered at 1500°C in air was independent of A12O3 content, but a significant improvement in the bending strength was achieved by the post-HIPing technique. The bending strength and the fracture toughness of the HIPed composites increased with increasing A12O3 content. Ionic conductivity of the composites was evaluated and the total, lattice, and grain boundary conductivities slightly decreased with increasing A12O3 content. The HIPed composites containing up to 20 vol.% A1203 appear to be suitable candidate materials as electrolyte for solid oxygen fuel cell.  相似文献   

12.
TiB2–Al2O3 composites with Ni–Mo as sintering aid have been fabricated by a hot-press technique at a lower temperature of 1530 °C for 1 h, and the mechanical properties and microstructure were investigated. The microstructure consists of dispersed Al2O3 particles in a fine-grained TiB2 matrix. The addition of Al2O3 increases the fracture toughness up to 6.02 MPa m1/2 at an amount of 40 vol.% Al2O3 and the flexural strength up to 913.86 MPa at an amount of 10 vol.% Al2O3. The improved flexural strength of the composites is a result of higher density than that of monolithic TiB2. The increase of fracture toughness is a result of crack bridging by the metal grains on the boundaries, and crack deflection by weak grain boundaries due to the bad wetting characters between Ni–Mo and Al2O3.  相似文献   

13.
以CaO-B2O3-SiO2(CBS)玻璃粉体和Al2O3陶瓷粉体为原料,通过在CBS与Al2O3的质量比固定为50:50的玻璃-陶瓷复合材料中添加适量的Bi2O3作为烧结助熔剂,探讨了Bi2O3助熔剂对CBS/Al2O3复合材料的烧结性能、介电性能、抗弯强度和热膨胀系数的影响规律.研究表明:Bi2O3助熔剂能通过降低CBS玻璃的转变温度和黏度促进CBS/Al2O3复合材料的致密化进程,于880 ℃下烧结即能获得结构较致密、气孔较少的CBS/Al2O3复合材料.然而,过量添加Bi2O3将使玻璃的黏度过低,从而恶化CBS/Al2O3复合材料的烧结性能、介电性能及抗弯强度.当Bi2O3的添加量为CBS/Al2O3复合材料的1.5wt%时,于880 ℃下烧结即能获得最为致密的CBS/Al2O3复合材料,密度为2.82 g·cm-3,这一材料具有良好的介电性能(介电常数为7.21,介电损耗为1.06×10-3),抗弯强度为190.34 MPa,0~300 ℃的热膨胀系数为3.52×10-6 K-1.  相似文献   

14.
利用Al-TiO2-TiC体系,通过机械球磨和反应热压制备出Ti3AlC2与Al2O3两相原位内生成增强TiAl3金属基复合材料。借助DSC、XRD、SEM和TEM研究了复合材料的反应机制、显微组织、力学性能及抗氧化性能。结果表明,球磨50h后的复合粉末经1 250℃/50 MPa保温10min烧结后可得到组织均匀细小且致密的Ti3AlC2-Al2O3/TiAl3复合材料,其密度、维氏硬度、室温三点弯曲强度、断裂韧性及压缩强度分别为3.8g/cm3、8.4GPa、658.9 MPa、7.9 MPa·m1/2和1 742.0 MPa,1 000℃的高温压缩强度为604.1 MPa。Ti3AlC2-Al2O3/TiAl3复合材料的增韧机制主要包括Ti3AlC2和Al2O3颗粒的剥离、Ti3AlC2相导致的裂纹偏转和桥接以及Ti3AlC2颗粒的变形及层裂。Ti3AlC2-Al2O3/TiAl3复合材料在700~1 000℃温度区间内生成的氧化层虽不致密,但仍表现出优异的抗高温循环氧化性能。  相似文献   

15.
The C40 Mo(Si0.75Al0.25)2/Al2O3 composites were prepared by spark plasma sintering (SPS) of mechanically alloyed (MA) powders. The Mo(Si0.75Al0.25)2/0–20 vol.% Al2O3 materials, showing micron and submicron composite structure, possess a hardness of 13.9–14.6 GPa but a poor toughness of 1.78–1.80 MPa m1/2. The addition of 30 vol.% Al2O3 leads to the formation of the micron C40 Mo(Si0.75Al0.25)2/Al2O3 composite with an intergranular distribution of Al2O3, that results in a drop of the hardness to 10.2 GPa and an improvement of the toughness to 3.67 MPa m1/2. The transition of the cleavage facets to the intergranular fracture with the addition of Al2O3 is assumed as the main toughening mechanism.  相似文献   

16.
周宏  张玉霞  范勇  陈昊 《复合材料学报》2014,31(5):1142-1147
采用水热法制备片状纳米Al2O3,经过偶联剂改性后与环氧树脂复合,通过溶液混合法制备了不同填充量的片状纳米Al2O3/环氧树脂复合材料,研究了片状纳米Al2O3用量对片状纳米Al2O3/环氧树脂复合材料介电性能和热性能的影响,利用SEM对复合材料的断口形貌进行了表征。结果表明: 片状纳米Al2O3在环氧树脂基体中分散良好;随着片状纳米Al2O3填充量的增加,复合材料的起始热分解温度升高、介电强度增大,当片状纳米Al2O3的填充量为7wt%时,复合材料的介电强度为 29.58 kV/mm,比纯环氧树脂的介电强度提高了30%;复合材料的介电常数(3.8~4.5)和介电损耗(0.015)比纯环氧树脂稍有增大,但仍维持在较好的介电性能范围内。  相似文献   

17.
以双酚A型环氧树脂(E51)和双酚A型氰酸酯(BCE)为原料,研究E51改性BCE共固化反应机制。同时,以E51-BCE为基体树脂,溶胶-凝胶法(Sol-Gel)自制Al2O3为增强体,制备Al2O3改性E51-BCE (Al2O3/E51-BCE)复合材料。通过非等温DSC确定了E51-BCE体系的固化工艺及固化反应动力学,并根据Kissinger法和Ozawa法求得体系的表观活化能分别为66.13 kJ/mol和69.46 kJ/mol。利用红外光谱跟踪固化体系在起始固化温度为160℃、 180℃时的反应历程,结果表明:起始固化温度在160℃时,以E51与BCE直接反应为主;起始固化温度在180℃时, BCE反应活性提高,以BCE自聚反应为主,生成三嗪环的速率加快,少量的BCE直接与E51反应生成恶唑啉结构。对Sol-Gel法自制Al2O3进行FTIR和TEM表征,结果表明:Al2O3为短纤维状的晶体,表面含有少量羟基。SEM结果显示:Al2O3为分散相,与基体间界面模糊, Al2O3/E51-BCE复合材料的脆断面裂纹不规则,为典型的韧性断裂;当Al2O3掺杂量为3wt%时, Al2O3在基体中分散均匀, Al2O3/E51-BCE复合材料的冲击强度和弯曲模量分别为24.2 kJ/m2和2.54 GPa,比基体树脂的冲击强度和弯曲模量分别提高53.65%和22.12%,力学性能得到明显改善。  相似文献   

18.
颜建辉  康蓉  唐幸  汪异  邱敬文 《复合材料学报》2021,38(11):3747-3756
多相Mo-12Si-8.5B合金是一种很有应用前景的高温结构材料,为了同时提高Mo-12Si-8.5B合金的强度和韧性,提出了采用纳米ZrO2(Y2O3)强韧化具有双峰晶粒度分布Mo-12Si-8.5B复合材料的方法。首先采用溶胶-凝胶和高温氢还原法制备了纳米Mo-ZrO2(Y2O3)复合粉末,然后以纳米Mo-ZrO2(Y2O3)粉末和微米Mo粉末为原材料,采用放电等离子烧结(SPS)技术制备了具有双峰晶粒度分布的Mo-12Si-8.5B-ZrO2(Y2O3)复合材料。结果表明,随着ZrO2(Y2O3)含量的增加,制备的Mo-ZrO2(Y2O3)纳米粉末的粒度和烧结体相对致密度均逐渐减小,ZrO2(Y2O3)含量小于2.5wt%时,烧结体的相对致密度均大于98.1%。当ZrO2(Y2O3)含量为1.5wt%和2.5wt%时,复合材料具有较高的硬度(9.76~9.98 GPa),抗弯强度(672~678 MPa)和断裂韧性(12.68~12.82 MPa·m1/2)。Mo-12Si-8.5B-ZrO2(Y2O3)复合材料中Mo晶粒细化、粗细Mo晶粒的晶界强化和纳米ZrO2(Y2O3)颗粒第二相强化是提高硬度和抗弯强度主要原因;复合材料中粗晶粒Mo和纳米ZrO2(Y2O3)有助于断裂韧性的提高,材料的增韧机制主要是裂纹偏转和裂纹桥接。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号