首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energy-saving plant-wide design and plant-wide control of an acetic acid dehydration system with the feed containing methyl acetate and p-xylene are investigated in the study. A heterogeneous azeotropic distillation using isobutyl acetate as an entrainer is designed to obtain high-purity acetic acid at the column bottom and to keep a small acetic acid loss through the top aqueous draw. The accumulation of p-xylene in the column is avoided by adding a side product stream. The mixture in the aqueous phase of decanter, containing mostly water, methyl acetate, and isobutyl acetate is separated using a divided wall distillation column. The whole acetic acid dehydration system includes a heterogeneous azeotropic distillation column and a divided wall distillation column.The control strategies using temperature loops are proposed for this acetic acid dehydration system. For the heterogeneous azeotropic distillation column, the requirements for acetic acid compositions in both the aqueous phase of the decanter and the column bottom can be satisfied by designing entrainer inventory temperature control and cascade temperature control simultaneously. The stages of controlled temperatures are chosen by singular value decomposition and closed-loop analysis methods based on the criteria of minimum entrainer makeup. For the divided wall distillation column, steady-state analysis methods are used for the selection of proper controlled and manipulated variables and the determination of their pairings. Dynamic simulation results demonstrate that the proposed plant-wide control strategy can maintain product purities and reject external disturbances in feed flow and composition changes as well as internal disturbances such as changes in liquid and vapor splits.  相似文献   

2.
In this work, a laboratory scale sieve plate distillation column was constructed to investigate the conventional control strategies of an isopropyl alcohol (IPA), cyclohexane (CyH) and water (H2O) heterogeneous azeotropic distillation column. Steady state process analysis showed that the optimal operation point should be located at a critical reflux, a transition point at which the distillation path switches from a route that passes through IPA+H2O azeotrope to one that passes through IPA+CyH azeotrope. At this critical reflux, a high purity IPA product can be obtained with minimum energy consumption and maximum product recovery. However, the steady state is extremely sensitive to feed disturbances. A good control strategy must be able to maintain a steady column temperature profile that shows a plateau near 70°C to ensure passage around IPA+CyH azeotrope. In this study, an inverse double loop control strategy is recommended. Through experimental testing, the proposed control strategy was demonstrated to keep the product IPA purity at the desired high-purity level under all feed disturbance changes while other conventional control strategies fail.  相似文献   

3.
Benzene hydrogenation via reactive distillation is a process that has been widely adopted in the process industry. However, studies in the open literature on control of this process are rare and seem to indicate that conventional decentralized PI control results in sluggish responses when the reactive distillation column is subjected to disturbances in the feed concentration. In order to overcome this performance limitation, this work investigates model predictive control (MPC) strategies of a reactive distillation column model, which has been implemented in gPROMS. Several MPCs based upon different sets of manipulated and controlled variables are investigated where the remaining variables remain under regular feedback control. Further, MPC controllers with output disturbance correction and, separately, with input disturbance correction have been investigated. The results show that the settling time of the column can be reduced and the closed loop dynamics significantly improved for the system under MPC control compared to a decentralized PI control structure.  相似文献   

4.
Divided wall column is a promising energy-alternative for separation process which is capable of achieving typically 30% energy and capital cost savings compared with a conventional distillation system. Despite such advantages, divided wall column (DWC) is not widely used from the fear to run into controllability problems due to the DWC complexity. A profile position control scheme was proposed to overcome the control problems. Relative gain array analysis and singular value decomposition were used to determine optimal control configuration. Dynamic simulation showed that the profile position–product composition cascade control can keep the product purities at the desired values in the face of feed and internal disturbances.  相似文献   

5.
This work develops a dynamic, first principles-based model of a reactive distillation column used for benzene hydrogenation of a reformate stream and investigates different control structures for this process. The model is used initially to develop and evaluate a feedback control strategy which provides good regulatory performance for small disturbances, however, it tends to be sluggish for significant disturbances in the feed composition. In order to address this point, adding a feedforward controller to the feedback structure has also been investigated. However, the feedforward controller can only be implemented if composition measurements of the feed are taken. As online composition measurements are expensive in practice, several different scenarios have been investigated where samples of the feed are taken and subsequently analyzed in a lab, as represented by measurement time delays. Simulation results show that adding feedforward control to the feedback scheme can be very beneficial for this process, however, this is only the case if the composition disturbance measurements do not involve a significant time delay.  相似文献   

6.
Pressure-swing distillation and extractive distillation are two common methods for azeotrope separation. The economics and controllability are two crucial factors for evaluating the feasibility of a separation process. A varied-diameter column (VDC) was used in the process design to evaluate its economics and controllability. Five azeotropic systems were investigated in order to compare the economics of pressure-swing distillation and extractive distillation with a VDC. Results indicate that pressure-swing distillation with a VDC saves more money than extractive distillation. The dynamic control were evaluated in the acetone-methanol system for both processes with a VDC. The improved control structure for pressure-swing distillation with a VDC can handle ±20% disturbances effectively, while the improved control structure for extractive distillation with a VDC can only handle ±10% disturbances. A comparison of the two methods from the viewpoint of economics and controllability demonstrates that pressure-swing distillation is more suitable when using a VDC.  相似文献   

7.
Reactive distillation is a hybrid process with dual process objectives: reactant conversion and product composition. Control schemes for reactive distillation frequently neglect the effect of the principal operating parameters on the reactant conversion, and this has a detrimental effect on the overall process profitability. An ETBE reactive distillation column has been used as a case study to show how a two-point control configuration, which recognises the importance of both composition and conversion, can be developed and implemented for a reactive distillation process. The combined composition and conversion control configuration was tested using SpeedUp dynamic simulations and proved to be effective in maintaining a high isobutylene conversion despite process disturbances. The two-point control scheme also had superior disturbance rejection capability, especially for feed rate changes, and composition set-point sensitivity compared with a one-point control scheme.  相似文献   

8.
A reduced bilinear model of a binary distillation column is presented. This model has as control inputs the reflux rate and the heat flow of the reboiler, as perturbations the feed stream and its concentration, and as outputs the distillate and residual concentrations. A bilinear model is simpler than a non-linear one, and more exact than a linear model. Furthermore, its structure allows the design of a control structure via optimal control theory. In this paper, two optimal control schemes designed by the reduced bilinear model have been applied to a column simulated by an analytical model, obtaining a robust control of the process even in the presence of disturbances.  相似文献   

9.
Internal thermally coupled distillation column (ITCDIC) is a frontier of energy saving distillation researches, which is a great improvement on conventional distillation column (CDIC). However its high degree thermal coupling makes the control design a bottleneck problem, where data-driven model leads to obvious mismatch with the real plant in the high-purity control processes, and a first-principle model which is comprised of complex mass balance relations and thermally coupled relations could not be directly used as control model for the bad online computing efficiency. In the present work, wave theory is extended to the control design of ITCDIC with variable molar flow rates, where a general nonlinear wave model of ITCDIC processes based on the profile trial function of the component concentration distribution is proposed firstly; combined with the thermally coupled relations, a novel wave model based generic model controller (WGMC) of ITCDIC processes is developed. The benzene-toluene system for ITCDIC is studied as illustration, where WGMC is compared with another generic model controller based on a data-driven model (TGMC) and an internal model controller (IMC). In the servo control and regulatory control, WGMC exhibits the greatest performances. Detailed research results confirm the efficiency of the proposed wave model and the advantage of the proposed WGMC control strategy.  相似文献   

10.
M. España  I.D. Landau 《Automatica》1978,14(4):345-355
The distillation columns are considered as compartmental systems. Because the inputs act linearly upon the transports matter flows, it is possible to include this type of system in the class of bilinear systems. By considering as output the distillate concentration of one of the products contained in the distilled mixture, the distillation column can be assimilated to a compartmental system with three compartments each of them replacing a set of distillation plates. These considerations finally permit a characterization of a distillation column by a minimal bilinear model having only three state variables and eight structural parameters. An identification algorithm permitting the identification of such a reduced order bilinear model is presented and is based on the minimization of the output error. Simulation results obtained by using as reference a complete non-linear model of a distillation column are presented. These results illustrate the validity of the approach proposed as well as the performance of the identification method. The reduced order bilinear model obtained is robust and valid for large variations of the inputs and of the working points. The use of the resulting bilinear model for control purposes is discussed.  相似文献   

11.
This paper treats a case study on control structure selection for an almost binary distillation column. The column is energy integrated with a heat pump in order to transfer heat from the condenser to the reboiler. This integrated plant configuration renders the possible control structures somewhat different from what is usual for binary distillation columns. Further the heat pump enables disturbances to propagate faster through the system. The plant has six possible actuators of which three must be used to stabilize the system. Hereby three actuators are left for product purity control. An MILP screening method based on a linear state space model is used to determine economically optimal sets of controlled and manipulated variables. The generated sets of inputs and outputs are analysed with frequency dependent relative gain array (RGA), relative disturbance gain (RDG) and condition number (CN) to determine the best structure in terms disturbance rejection and setpoint tracking. The pairing and controller design are implemented and evaluated through nonlinear simulation. The suggested control structure is also qualitatively compared to a control structure applied experimentally.  相似文献   

12.
Using MPC to control middle-vessel continuous distillation columns   总被引:1,自引:0,他引:1  
The use of model predictive control (MPC) in middle-vessel continuous distillation column (MVCC) is discussed. It is shown that using a 5 × 5 MPC implementation (where all levels are included in MPC as integral process variables) allows using a smaller middle-vessel, particularly when disturbances can be measured: a good performance is ensured without having the middle vessel drained or overfilled. Also, it is shown that MPC practically circumvents the issue of tuning the middle-vessel level controller. Furthermore, the MVCC design makes conventional decentralised control perform comparably to MPC.  相似文献   

13.
A multivariable control problem of a distillation column is considered, where the object is to maintain two output variables, the compositions of the distillate and the bottom product at some desired values by manipulating the reflux flow rate and the boil-up rate.Based on a linearized model, a geometric approach is applied to the design problem of disturbance rejection control. In other words, a feedback control strategy is desired which enables the complete rejection of the effect of disturbances on both output variables.In obtaining the feedback control, the problem of how many and what state variables are to be measured and fed back has been made clear. In this control strategy, only five state variables are fed back. Thus, only five columns of the feedback gain matrix have non-zero values. Furthermore, two out of these five columns are uniquely determined, and the other three columns can be assigned arbitrary values and used for pole assignment of the controlled system.For the disturbances in composition and flow rate of the feed stream, ΔxF and ΔLF, the effect of the disturbance ΔxF is completely rejected by the feedback controller, but the effect of the disturbance ΔLF can only be eliminated from the output ΔxD.A digital simulation of a distillation column composed of nine plates, a condenser and a reboiler was carried out to confirm these results and to show that the linearized model used in this paper is valid for fairly large step changes.  相似文献   

14.
Decentralized control of the Tennessee Eastman Challenge Process   总被引:3,自引:0,他引:3  
A decentralized control system is developed for the Tennessee Eastman Challenge Process (TE problem). The design procedure begins with the selection of the method for production-rate control, to which inventory controls and other functions are then coordinated. Results show that production rate can be maximized at any of the three standard product compositions, even when the feed of reactant A is lost. All specifications of the challenge problem are satisfied despite large disturbances in feed composition and reaction kinetics. Variability in product rate and quality is less than that seen in previous studies. The process can operate on-spec for long periods without feedback from composition measurements. Setpoints for certain variables (such as reactor temperature and concentrations of A and C in the reactor feed) must be chosen a priori, and the effect on operating cost is estimated. The performance of the proposed decentralized control is compared to that of a nonlinear model predictive control (NMPC) developed previously. There appears to be little, if any, advantage to the use of NMPC in this application. In particular, the decentralized strategy does a better job of handling constraints - an area in which NMPC is reputed to excel. Reasons for this are discussed.  相似文献   

15.
The integration of a nonlinear reduced process model with Parametric Predictive Control (PPC) is discussed for the bottom temperature control of a stabilizer distillation column. One of the main objectives is ensure the quality of the bottom product despite disturbances and complex dynamics. The purpose is to balance nonlinear control with simplicity, facilitating implementation in a DCS. The controllers developed were first tested in a simulated environment and then in the field, showing good performance under a wide range of operating conditions. The use of an estimator to compensate for modeling errors and unmeasured disturbances is also discussed.  相似文献   

16.
Elementary nonlinear decoupling (END) is a model based control algorithm intended to decouple and linearize a nonlinear multivariable process in order to achieve better control than can be obtained by conventional decentralized linear feedback control. The application of END to the composition control of a theoretical binary distillation column illustrates that the quality achievable is very high.  相似文献   

17.
This paper presents a method for the incorporation of robust stability criteria in the design of dynamic systems under uncertainty. Process systems are modelled via dynamic mathematical models, variations include both uncertain parameters and time-varying disturbances, while control structure selection and controller design is considered as part of the design optimization problem. Stability criteria are included, based on the concept of the measure of a matrix, to maintain desired dynamic characteristics, in a multiperiod design formulation. A combined flexibility-stabiluty analysis step is also introduced to ensure feasible and stable operation of the dynamic system in the presence of parametric uncertainties and process disturbances. The potential of the proposed approach is illustrated with a ternary distillation column design and control problem (featuring a rigorous tray-by-tray model).  相似文献   

18.
基于模型的多变量控制技术能够很好解决常减压装置中原料性质变化及相关参数耦合严重的问题,该先进控制系统选用Shell的SMOCpro和RQEpro软件包设计开发了五个子控制器,包括初馏塔、常压炉、减压炉、常压塔、减压塔等关键装置及流程.因为多变量控制器设计中考虑了很多变量的关联性,同时利用预测控制及软测量技术预测出约束到...  相似文献   

19.
为了更合理利用能量,将平流多效精馏系统中各效塔底产品、第1效至第n-1效塔顶产品及首效再沸器中加热生蒸汽的冷凝液用于预热原料液,建立由多效精馏及多级预热2个子系统构成的复杂平流多效精馏系统的能量集成模型。用于模拟具有切点系统的高度非理想溶液的平流多效精馏过程,用迭代法结合矩阵法求解。结果表明:用系统余热预热原料液可节省加热生蒸汽消耗量25%~35%,是1种非常有效的节能措施;各效精馏塔回流比及再沸器的有效传热温差、首效塔底再沸器中加热生蒸汽压力(或温度)、末效塔顶压力(或温度)、原料液的预热温度等参数,对平流多效精馏系统的操作费用及设备费用影响很大。  相似文献   

20.
This paper studies the optimal control with zero steady-state error problem for nonlinear large-scale systems affected by external persistent disturbances. The nonlinear large-scale system is transformed into N nonlinear subsystems with interconnect terms. Based on the internal model principle, a disturbance compensator is constructed such that the ith subsystem with external persistent disturbances is transformed into an augmented subsystem without disturbances. According to the sensitivity approach, the optimal tracking control law for the ith nonlinear subsystem can be obtained. The optimal tracking control law for the nonlinear large-scale systems can be obtained. A numerical simulation shows that the method is effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号