首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MoS2/Zr composite films were deposited on the cemented carbide YT14 (WC+14%TiC+6%Co) by medium-frequency magnetron sputtered coupled with multi-arc ion plating techniques. The thickness, micro-hardness, and coating/substrate adhesion strength of the coatings were tested. Surface morphologies of the composite coatings, as well as wear features, were investigated by scanning electron microscopy. Dry machining tests on hardened steel were carried out with the coated tool and uncoated YT15 tool. The variation of cutting forces for 45# hardened steel was tested by the Kistler force tester. The result shows that the cutting forces of coated tool were decreased by 25–30%, and flank wear resistance was improved by 30–35% in comparison with the uncoated YT15 tool. Through the analysis of cutting force distribution theory, the lower mean shear stress on the MoS2/Zr-coated tool face leads to the decrease of cutting force and increase of tool wear resistance.  相似文献   

2.
Abstract

The present study focuses on the effects of cutting speed, feed rate and cutting tool material on the machining performance of carbon graphite material. Polycrystalline Diamond (PCD) cutting tools are used in machining experiments and its performance is compared with the tungsten carbide (WC) and Cubic Boron Nitride (CBN) tools. Machining performance criteria such as flank and nose wear and resulting surface topography and roughness of machined parts were studied. This study illustrates that feed rate and cutting tool material play a dominant role in the progressive wear of the cutting tool. The highest feed rate and cutting speed profoundly reduce the tool wear progression. The surface roughness and topography of specimens are remarkably influenced from the tool wear. Major differences are found in the wear mechanisms of PCD and WC and CBN cutting tools.  相似文献   

3.
Titanium and its alloys are well known as the typical different-to-cut materials because of their low thermal conductivity, high chemical reactivity, and low modulus of elasticity. During machining of titanium alloy, advanced high-speed, high-efficiency processing technologies are adopted to improve the production efficiency and reduce the production costs. The main goal of this work is to compare the performance of physical vapor deposition (PVD)-coated (TiN/TiAlN) and chemical vapor deposition (CVD)-coated (TiN/Al2O3/TiCN) carbide inserts in face milling TC6 alloy. To this end, the present paper reviewed the main works on the application of PVD- and CVD-coated tools in machining titanium alloys and the material performance of TC6 alloy, especially the machinability in machining process. Several tool life tests and tool wear experiments were carried out on a milling center with a five-axis spindle drive. Cutting forces were measured with a Kistler dynamometer. The failure modes and chip morphology were observed. Surface roughness and tool wear evolution were determined. The wear mechanism was discussed to compare the performance of PVD and CVD-coated tools. The main conclusions of this work were that the cutting tools made with PVD coating (TiN/TiAlN) had the excellent tooling quality and the main wear mechanisms were spalling and adhesion. PVD-TiN/TiAlN insert was more suitable to milling TC6 alloy than CVD-TiN/Al2O3/TiCN insert.  相似文献   

4.
The coating material of a tool directly affects the efficiency and cost of machining malleable cast iron.However,the machining adaptability of various coating materials to malleable cast iron has been insufficiently researched.In this paper,turning tests were conducted on cemented carbide tools with different coatings(a thick TiN/TiAlN coating,a thin TiN/TiAlN coating,and a nanocomposite(nc)TiAlSiN coating).All coatings were applied by physical vapor deposi-tion.In a comparative study of chip morphology,cutting force,cutting temperature,specific cutting energy,tool wear,and surface roughness,this study analyzed the cutting characteristics of the tools coated with various materials,and established the relationship between the cutting parameters and machining objectives.The results showed that in malleable cast iron machining,the coating material significantly affects the cutting performance of the tool.Among the three tools,the nc-TiAlSiN-coated carbide tool achieved the minimum cutting force,the lowest cutting tempera-ture,least tool wear,longest tool life,and best surface quality.Moreover,in comparisons between cemented-carbide and compacted-graphite cast iron machined under the same conditions,the wear mechanism of the coated tools was found to depend on the cast iron being machined.Therefore,the performance requirements of a tool depend on multiple factors,and selecting an appropriately coated tool for a particular cast iron material is essential.  相似文献   

5.
钛合金零件高速铣削刀具磨损的试验研究   总被引:1,自引:0,他引:1  
吴欣  张柳  徐锋 《电子机械工程》2009,25(6):41-45,58
高速铣削钛合金时,由于切削区内的切削温度高,加剧了刀具的磨损。通过对钛合金TC4的高速铣削实验,得出带TiA lN涂层的硬质合金刀具切削钛合金TC4时的刀具磨损的变化规律和刀具耐用度公式。通过对刀具磨损特性的分析,研究结果主要是刀具表面层的粘结相Co在高温下丧失对WC颗粒的结合强度,磨损机理以高温下的粘结层撕裂磨损为主。  相似文献   

6.
高硅铝合金由于硅含量很高,故切削加工性较差,切削刀具极易磨损且已加工表面存在大量缺陷.为进一步研究材料加工损伤,采用化学气相沉积法制备了金刚石涂层铣刀,开展70%Si/Al(70%指质量分数)合金材料铣削试验.试验研究了铣削力、刀具磨损及加工损伤机理,并与常用TiN涂层铣刀进行了对比.结果 表明:铣削过程中由于初晶硅硬...  相似文献   

7.
Hard coatings are an important factor affecting the cutting performance of tools. In particular, they directly affect tool life, cutting forces, surface quality and burr formation in the micro-milling process. In this study, the performance of nano-crystalline diamond (NCD) coated tools was evaluated by comparing it with TiN-coated, AlCrN-coated and uncoated carbide tools in micro-milling of Ti6Al4V alloy. A series of micro-milling tests was carried out to determine the effects of coating type and machining conditions on tool wear, cutting force, surface roughness and burr size. Flat end-mill tools with two flutes and a diameter of 0.5 mm were used in the micro-milling process. The minimum chip thickness depending on both the cutting force and the surface roughness were determined. The results showed that the minimum chip thickness is about 0.3 times that of the cutter corner radius for Ti6Al4V alloy and changes very little with coating type. It was observed from wear tests that the dominant wear mechanism was abrasion. Maximum wear occurred on NCD-coated and uncoated tools. In addition, maximum burr size was obtained in the cutting process with the uncoated tool.  相似文献   

8.
The performance of cemented carbide cutting tools during machining is influenced not only by the mechanical properties of the coating and substrate but also by the topographies of their surfaces. A tool with good coating and substrate properties but unsuitable topographies may exhibit accelerated wear and, consequently, impaired performance. In this work, drills coated using physical vapor deposition (PVD) were produced with different substrate textures, which in turn generated different coating textures. The surface roughness values of the coated drills were measured together with the residual stress at the interface between substrate and coating. Drilling tests were performed and tool wear was measured during the machining process. Two different tool coatings were studied: TiAlN and TiAlCrSiN. The goal was to study how the characteristics of the substrate and coating (material, surface topography, and residual stress) influence tool life. Tool life experiments were carried out using drilling tests in AISI 1548 steel, which is often used in crankshafts. The primary tool wear mechanism was attrition in all the drills. The main conclusion of this work is that the tool with the lowest roughness and a TiAlCrSiN coating had the best performance in the conditions tested here.  相似文献   

9.
Machining of aluminum and its alloy is very difficult due to the adhesion and diffusion of aluminum, thus the formation of built-up edge (BUE) on the surface. The BUE, which affects the surface integrity and tool life significantly, affects the service and performance of the workpiece. The minimization of BUE was carried out by selection of proper cutting speed, feed, depth of cut, and cutting tool material. This paper presents machining of rolled aluminum at cutting speeds of 336, 426, and 540 m/min, the feeds of 0.045, 0.06, and 0.09 mm/rev, and a constant depth of cut of 0.2 mm in dry condition. Five cutting tools WC SPUN grade, WC SPGN grade, WC + PVD (physical vapor deposition) TiN coating, WC + Ti (C, N) + Al2O3 PVD multilayer coatings, and PCD (polycrystalline diamond) were utilized for the experiments. The surface roughness produced, total flank wear, and cut chip thicknesses were measured. The characterization of the tool was carried out by a scanning electron microscope (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) pattern. The chip underface was analyzed for the study of chip deformation produced after machining. The results indicated that the PCD tool provides better results in terms of roughness, tool wear, and smoother chip underface. It provides promising results in all aspects.  相似文献   

10.
Machining of Nimonic C-263 has always been a challenging task owing to its hot strength, low thermal conductivity, tendency to work harden and affinity towards tool materials. Although coated tools have been used to overcome some of these challenges, selection of coated tool with appropriate deposition technique is of immense significance. The current study attempts to comparatively evaluate various performance measures in machining of Nimonic C-263 such as surface roughness, cutting force, cutting temperature, chip characteristics, and tool wear with particular emphasis on different modes of tool failure for commercially available inserts with multi-component coating deposited using chemical vapour deposition (CVD) and physical vapour deposition (PVD) techniques. Influence of cutting speed (Vc) and machining duration (t) has also been investigated using both coated tools. The study demonstrated remarkable decrease in surface roughness (74.3%), cutting force (6.3%), temperature (13.4%) and chip reduction coefficient (22%) with PVD coated tool consisting of alternate layers of TiN and TiAlN over its CVD coated counterpart with TiCN/Al2O3 coating in bilayer configuration. Severe plastic deformation and chipping of cutting edge and nose, abrasive nose and flank wear along with formation of built-up-layer (BUL) were identified as possible mechanisms of tool failure. PVD coated tool successfully restricted different modes of tool wear for the entire range of cutting speed. Superior performance can be attributed to the hardness and wear resistance properties, thermal stability due to presence of TiAlN phase and excellent toughness owing to PVD technique and multilayer architecture.  相似文献   

11.
High-speed milling tests were carried out on Ti–6Al–4V titanium alloy with a polycrystalline diamond (PCD) tool. Tool wear morphologies were observed and examined with a digital microscope. The main tool failure mechanisms were discussed and analyzed utilizing scanning electron microscope, and the element distribution of the failed tool surface was detected using energy dispersive spectroscopy. Results showed that tool flank wear rate increased with the increase in cutting speed. The PCD tool is suitable for machining of Ti–6Al–4V titanium alloy with a cutting speed around 250 m/min. The PCD tool exhibited relatively serious chipping and spalling at cutting speed higher than 375 m/min, within further increasing of the cutting speed the flank wear and breakage increased greatly as a result of the enhanced thermal–mechanical impacts. In addition, the PCD tool could hardly work at cutting speed of 1,000 m/min due to the catastrophic fracture of the cutting edge and intense flank wear. There was evidence of workpiece material adhesion on the tool rake face and flank face in very close proximity to the cutting edge rather than on the chipped or flaked surface, which thereby leads to the accelerating flank wear. The failure mechanisms of PCD tool in high-speed wet milling of Ti–6Al–4V titanium alloy were mainly premature breakage and synergistic interaction among adhesive wear and abrasive wear.  相似文献   

12.
The performance of PCD tools in high-speed milling of Ti6Al4V   总被引:1,自引:1,他引:0  
Tool performance of conventional tools is poor and a major constraint when used in milling titanium alloys at elevated cutting speeds. At these high cutting speeds, the chemical and mechanical properties of Ti6Al4V cause complex wear mechanisms. In this paper, a fine-grain polycrystalline diamond (PCD) end mill tool was tested, and its wear behavior was studied. The performance of the PCD tool has been investigated in terms of tool life, cutting forces, and surface roughness. The PCD tool yielded longer tool life than a coated carbide tool at cutting speeds above 100?m/min. A slower wear progression was found with an increase in cutting speeds, whereas the norm is an exponential increase in tool wear at elevated speeds. Observations based on scanning electron microscope (SEM) and energy dispersive spectroscopy (EDAX) analysis suggest that adhesion of the workpiece is the wear main type, after which degradation of the tools accelerates probable due to the combined effect of high temperature degradation coupled with abrasion.  相似文献   

13.
This article investigates the chemical wear behavior of the ultra-hard ceramic AlMgB14 and cemented tungsten carbide for machining aerospace alloys. The chemical interdiffusivity of AlMgB14 against pure Ti and Ti-6Al-4V, in comparison with cemented carbide (WC-6%Co) cutting tool was investigated by means of diffusion couple experiments. The chemical composition profiles of various tool-workpiece combinations were determined by electron probe microanalysis after exposing the couples to 1000°C for 120 h in vacuum. Thermodynamic calculations of the chemical solubility of AlMgB14 show that the experimental diffusion results are in reasonable agreement with the predicted behavior. It is shown that AlMgB14 is significantly less soluble in titanium under static diffusion conditions, and therefore, shows considerable promise as a potential cutting tool for machining Ti alloys.  相似文献   

14.
针对传统电火花沉积工艺中工具电极预制成本高、工艺复杂、材料选择范围受限等问题,提出了一种超声辅助电火花粉末沉积(Ultrasonic-assisted electro-spark powder deposition,UEPD)的新方法。利用UEPD工艺成功地在316L不锈钢基材上制备了WC-Ni金属陶瓷涂层。所制备的WC-Ni金属陶瓷涂层的厚度为89~159 μm,表面粗糙度约为3.672 μm,并且与基材呈现良好的冶金结合。超声振动的引入能够有效改善涂层的成形质量。涂层的微观组织主要由亚微米级细小枝晶组成,主要物相包括FeNi、Cr3Ni、WC、W2C、Cr23C6和Cr3C2等。这些细小的晶粒和强化相使金属陶瓷涂层的硬度明显增加,平均硬度达到980.68 HV,约为基材的4.1倍。摩擦磨损性能测试表明,金属陶瓷涂层的磨损率相比基材和不含WC的Ni基合金涂层分别降低了50.7%和37.7%,并且还表现出明显低于二者的摩擦因数。WC-Ni金属陶瓷涂层的主要磨损机理为疲劳磨损和磨粒磨损,其中高硬度表面和具有颗粒流润滑效果的磨屑层是金属陶瓷涂层实现高耐磨、低摩擦的主要原因。UEPD工艺相比于传统的电火花沉积工艺省却了复杂的工具电极预制过程,其工艺更简单,成本更低廉、材料选择更广泛,并且所制备的涂层也表现出良好的成形质量和性能。这为电火花沉积技术的发展提供了一种新的思路。  相似文献   

15.
Jen Fin Lin  Tzuen Ren Li 《Wear》1993,160(2):201-212
Wear tests were conducted on a rotor-vane-disk adaptor where three rotating vanes were pressed against a disk. Vanes were coated by WC and used as the upper specimen while the disk was coated by Cr2O3 and used as the lower specimen. A buffer layer of various thicknesses and contents was placed between the top coating and the bulk steel of the disk to alleviate the effects of the large difference in thermal properties of the two materials. The experimental results reveal that correct placement of a buffer layer can indeed improve the wear resistance. Factors such as the temperature to which the specimen was heated before testing, the proportion by weight of each individual constituent in the buffer layer, and the thickness of each coating layer, were also important for the volume of wear of the lower specimen. As the specimens were heated to higher temperatures, the wear volume decreased with increasing proportions of Cr2O3 in the buffer layer. Elevating the preheating temperature of the specimens can diminish the wear volume but increases the friction coefficient. The steady-state wear rate is not much influenced by the constituents of the buffer layer and the coating thickness. Brittle fracture, abrasion, adhesion and oxidation were found to be the primary wear mechanisms in the tests.  相似文献   

16.
Wear resistance of coatings in high speed gear hobbing   总被引:2,自引:0,他引:2  
J. Rech  M. A. Djouadi  J. Picot 《Wear》2001,250(1-12):45-53
Coating technology is one means of achieving a crucial enhancement in tool performance, especially in hobs that were among the first tools to be coated on a large scale. Nevertheless only few detailed analysis of wear mechanism have been done on field machines. The bifunctional coatings (combination of a tough, hard and refractory coating and of a self lubricating coating possessing a good thermochemical and abrasion resistance but a lower hardness) are very interesting since it is difficult to get a simple coating showing all these characteristics. The use of bilayer coatings raises several problems especially for dry and high speed cutting. Therefore, in order to investigate the behaviour of these bifunctional coatings, hobs have been coated by physical vapour deposition (PVD) methods. After the elaboration of a procedure for hobs testing, field tests have been performed. Results of tool life tests and investigations on tool wear mechanisms for different coated hobs are presented and discussed. The interesting performance in high speed gear hobbing of sintered high speed steel (HSS) hobs (ASP2052) combined with a (Ti,Al)N+MoS2 coating is particularly underlined.  相似文献   

17.
氮化碳涂层刀具干式切削研究   总被引:1,自引:0,他引:1  
通过与传统湿式切削加工的对比,介绍了金属干式切削加工的技术优点和发展趋势,分析了氮化碳涂层刀具的特点。通过干式切削淬火钢的试验,分析了涂层刀具干式切削加工的技术特点及刀具的磨损机理。试验表明,氮化碳涂层能够很好地保证干式切削的进行,涂层一旦磨损,刀具很快磨损;切削参数中切削速度对刀具寿命影响最大。  相似文献   

18.
This paper focuses on the analysis of tool wear mechanisms in finishing turning of Inconel 718, one of the most used Ni alloys, both in wet and dry cutting. Cemented carbides, ceramics and CBN tools are suitable for machining Ni alloys; coated carbide tools are competitive for machining operations of Ni alloys and widely used in industry. Commercial coated carbide tools (multilayer coating TiAl/TiAlN recommended for machining Ni alloys) were studied in this work. The feasibility of two inserts tested for dry cutting of Inconel 718 has been shown in the work. Experimental test were performed in order to analyze wear patterns evolution. It was found great influence of side cutting edge angle in tool wear mode.  相似文献   

19.
Typically closed-field unbalanced magnetron sputtering (CFUBMS) and controlled cathodic arc deposition techniques having four or six pure or alloyed targets are employed for commercial titanium aluminium nitride (TiAlN) coating of cutting tools. The role of the use of alloyed target vis-à-vis pure target on the coating characteristics and the machining performance of TiAlN-coated tools has not been studied in detail. In the present work, TiAlN coating has been deposited on cutting tools using a pulsed DC, dual-cathode CFUBMS system to capture the role of the type of target on machining performance. The deposition rate in the case of the alloyed target has been found to be much higher as compared to the pure target. Such coatings deposited from alloyed targets also provided significantly better machining performance in dry turning of low-carbon and high-carbon steel. Dry turning of SAE 1070 high-carbon steel at 160 m/min did not yield more than 100 μm of average flank wear on the same insert coated using alloyed targets for a machining time of more than 3 min.  相似文献   

20.
Abstract

The objective of this study is to investigate the enhancement of tool life and wear resistance with a physical vapour deposition (PVD) process applied using aluminium chromium nitride (AlCrN) and titanium nitride (TiN) coating on carbide inserts. Flank wear experiments are carried out on a computer numerically controlled (CNC) machine under wet conditions with both the coated inserts. Effectiveness of the coating on the tool life and its resistance to flank wear are observed at various cutting parameters such as cutting speed and feed rate by following the principle of design of experiments (DOE). It is inferred that AlCrN coated carbide tools perform nearly 70% better than the TiN coated carbide tools under high cutting speed and feed rate. AlCrN coating also enhances the durability of tool for metal cutting and thereby improves tool life even under harsh cutting conditions. A response surface methodology (RSM) is utilised to arrive at the optimum value for the various parameters which are responsible for improving the wear resistance and tool life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号