首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 765 毫秒
1.
通过试验获得了原状黄土冻融后的强度参数,并利用有限元方法分析了冻融对黄土隧道洞口段应力及变形的影响。分析结果表明,在冻融作用下,覆土厚度和冻融次数均会对拱顶位移和拱顶上部土体水平压应力产生影响。覆土厚度越大,隧道在开挖和经历冻融后,拱顶沉降也越大;且冻融第1次后对拱顶沉降影响最大。拱顶上部土体水平压应力最大值随覆土厚度的增加而增大;距拱顶较近土体的水平压应力随冻融次数增加逐渐减小,距拱顶较远土体的水平压应力值随冻融次数增加逐渐增大。  相似文献   

2.
隧道洞口段是指隧道洞口暗挖进洞一定长度的区域,覆盖层厚度小于2倍毛洞开挖宽度,一般较洞身围岩条件差,埋深浅,受地形、环境条件影响较大,如地表水渗流、气候急剧变化等都容易对隧道洞口段围岩条件、开挖环境造成影响。地质条件较好的隧道洞口段常采用上下台阶法和环形导坑法进行开挖。文章以厦门市同安区大轮山隧道为例,通过数值模拟方式,分析洞口段上下台阶法和环形导坑法施工时地面沉降和拱顶沉降的规律。  相似文献   

3.
受浅埋、偏压、岩体破碎等因素影响,晏家隧道的洞口段施工尤为困难,为解决该隧道进洞难题,现场采用了"综合超前支护+CRD开挖工法+复杂初期支护"相结合的洞口段施工技术,结合现场严密监控量测,对地表沉降、拱顶沉降、洞内收敛进行实时监测,将监测结果动态反馈给施工及设计进行修正,使隧道洞口段得以顺利成洞,表明该施工技术能够为公路隧道洞口段施工提供参考。  相似文献   

4.
为了研究山岭隧道洞口段围岩变形特征,以贵州省晴隆-兴义高速公路登攀隧道为工程依托,对洞口段围岩变形展开研究,通过对现场围岩变形进行监测和数据处理,分析了山岭隧道洞口段围岩变形的时间与空间效应,进而对山岭隧道洞口段围岩变形时间特征和空间特征展开研究。研究结果表明:隧道开挖引起围岩变形具有明显的时间效应和空间效应,监测断面围岩变形在开挖后历经8 d和27 m~30 m后稳定;山岭隧道洞口段围岩变形具有明显的空间特征,周边收敛值在时间轴上规律性较差,但累计变形量较小,对隧道围岩稳定性影响有限;洞口段拱顶沉降与地表沉降时间历程曲线有明显的规律,但累计变形量、分布特征与围岩本身属性紧密相关,地域差异性较大。  相似文献   

5.
为研究地震作用下含软弱夹层隧道洞口仰坡的动力响应特性,针对含软弱夹层隧道洞口仰坡开展大型振动台试验研究,通过分析水平和竖向激振作用下洞口段仰坡和衬砌模型动力响应和破坏特征,得到以下结论:水平向激振作用下,仰坡沿坡面向上存在明显加速度放大效应,软弱夹层对竖向加速度激振时仰坡动力响应有显著影响;越接近临坡面,衬砌结构加速度响应和越大,并且洞口段隧道衬砌拱顶加速度峰值最大,仰拱最小,衬砌结构受力状态复杂;竖向加速度激振时,软弱夹层上覆模型土出现松动,坡脚土体出现挤压、掉块,仰坡整体上保持稳定;在水平向激振作用下,而含软弱夹层仰坡则在坡脚土体先被挤压破碎,然后坡顶表面沿软弱夹层位置出现张拉裂缝,上覆土体沿软弱夹层滑动,最后土体大规模崩塌、滑落。竖向和水平激振力作用下,衬砌45°方向应变幅值最大,衬砌洞口段设防长度为25 m。该研究成果可以为山岭隧道洞口段边坡抗减震研究和设计提供参考。  相似文献   

6.
在地质条件复杂的沿海富水地层开挖浅埋超大断面隧道,面临诸多风险,暗挖施工易对围岩进行扰动,引起地层变形。新型"管幕冻结"支护可以有效控制暗挖施工引起的地表沉降过大问题,该工法下隧道开挖过程中地表位移变化主要受暗挖产生的地层损失和土体冻结膨胀以及隧道开挖卸荷后的上浮效应等因素影响。基于现场实测数据,对洞内拱顶位移、水平收敛和地表变形规律进行分析发现,拱顶位移与对应地表处的位移变化具有较强的一致性,纵向上在隧道中部段出现上浮,两侧洞口段出现下沉。受分层开挖扰动影响,隧道两侧土体向内变形导致洞内水平收敛增大,最大水平收敛为15.72 mm,约为隧道横向跨度的0.8%。新型管幕冻结暗挖施工工法可以很好地控制富水地层渗漏水问题,且极大地减小了隧道内部的位移变形,但其冻结膨胀引起地表隆起及解冻后的地表融沉问题仍需密切关注。  相似文献   

7.
以某水工隧道洞口段工程为依托,在分析工程特点和周边环境的基础上,确定以地表沉降、净空收敛、拱顶下沉和锚杆轴力为监控量测项目的监测方案,并结合监测数据对隧道洞口段的围岩稳定性进行研究分析。结果表明:净空收敛、拱顶下沉的变形趋势接近一致,在下台阶及底基层的开挖过程中整体变化量为70%~90%;洞身开挖对地表沉降影响范围是洞径的5倍。监控量测方案能准确反映隧道洞口段施工过程中的围岩稳定状态,可以满足施工安全的需要,对类似围岩稳定监控具有一定的参考价值。  相似文献   

8.
张宝元 《四川建材》2018,(2):105-106
通过应用ABAQUS数值模拟方法,分析了冻融作用下黄土隧道洞口段水平应力和竖直应力的变化情况,研究得出:在历经冻融循环作用后,黄土隧道洞口段最大水平拉应力和最大水平压应力均逐渐减小。随着冻融次数的增加,隧道拱顶水平压应力、底面中部水平压应力、最大水平拉应力及最大水平压应力均逐渐减小,而拱顶竖直压应力与最大竖直压应力也逐渐减小。可知,冻融作用对黄土隧道拱顶处的竖向承载能力产生了一定的削弱作用。  相似文献   

9.
引入隧道与开挖面的相对位置系数α,研究双圆盾构施工在不同工况下引起的深层土体沉降计算公式,以土体沉降计算公式为基础建立能量变分方程,得到双圆盾构施工引起地下管线沉降的计算方法。通过算例对比分析4种典型工况下管线沉降的分布规律,验证公式推导结果正确性,并进一步分析了管线埋深和土体损失率等因素对管线最大沉降的影响规律。研究结果表明:本文方法计算3种正常工况下的管线沉降曲线满足正态分布,旋转工况下管线沉降分布不均匀,最大沉降向下沉隧道侧偏移,另一侧的沉降量则相对较小;土体损失率对管线的沉降有较大影响,而管线埋深对管线沉降的影响则相对较小。  相似文献   

10.
以吉林省舒兰市某隧道工程为例,运用Midas GTS有限元软件对隧道的施工过程进行了模拟分析,研究结果表明:随着隧道的不断开挖,隧道拱顶及其上覆岩土体逐渐发生沉降,且距离拱顶越近的位置,其沉降值越大,地表受隧道开挖影响而引起的沉降范围约为10倍的隧道跨度,隧道硐室底面的岩土体则随隧道开挖而产生向上的隆起位移,最大隆起位置位于硐室底面中心处,隧道衬砌结构在施工过程中所受的最大剪力与弯矩分别位于隧道的拱肩和拱顶位置。通过模拟分析得出此隧道施工过程中的变形及受力特点,可为相似的隧道工程设计、施工以及预防措施等方面提供一定的参考。  相似文献   

11.
长大隧道的辅助坑道与正洞交叉段施工工序繁多,围岩易受到开挖扰动,进而产生失稳破坏。以伏牛山隧道为工程背景,借助有限元软件PLAXIS3D构建三维数值模型,模拟了辅助坑道进入正洞的施工过程,研究了小导洞转向挑顶施工及正洞反向台阶法开挖的施工力学行为与三维空间效应,分析了施工过程中围岩应力、拱顶沉降、洞周横向收敛位移及围岩塑性区演化规律。结果表明:横向通道交叉口段施工会导致交叉口附近风机房正洞围岩产生应力重分布,在正洞拱顶及右拱腰处形成拉应力,沿风机房纵向影响范围约为1倍洞径; 风机房拱顶最终沉降量为3.7~3.9 mm,在交叉口及其附近,以小导洞爬坡挑顶阶段和风机房正洞反向开挖通过时引起的拱顶沉降量最大,小导洞转向挑顶施工引起的拱顶总沉降量相对较小; 联络通道左侧进洞使得正洞左侧横向位移增加,进而导致正洞左右两侧横向位移呈现不对称分布; 交叉口处联络通道与风机房产生了连续的塑性区,塑性点主要在开挖侧壁,拱腰处最为集中,向上延伸至拱肩,拱脚处向下发展至一定深度; 针对小导洞扩挖施工过程中交叉口、上台阶侧壁、底面出现的少量受拉破坏点,施工中应对这些部位予以重点关注,及时施作初期支护,防止局部掉块。  相似文献   

12.
黄土隧道浅埋偏压洞口段套拱结构受力监测与分析   总被引:1,自引:0,他引:1  
为了解黄土隧道浅埋偏压洞口段套拱结构的受力状况,对刘家坪2号隧道洞口段套拱基底应力、钢架应力、混凝土应力及拱顶下沉进行施工监测,并对监测结果进行分析。结果表明:浅埋偏压情况下,套拱两侧基底应力分布不均匀,拱顶填土引起基底应力急剧增长,仰拱施作后基底应力趋于稳定;套拱钢架受力复杂,有拉有压,且值很大,仰拱开挖引起钢架应力急剧增长,钢架在套拱支护结构中发挥了强大的支护作用;冬、夏季温差引起套拱混凝土应力随时间(季节)的变化呈现拉、压交替变化,夏季出现最大压应力,冬季出现最大拉应力,且压应力较小,拉应力较大,多处测点都超过了C25模筑混凝土设计轴心抗拉强度;套拱拱顶下沉主要由洞顶填土施工和仰拱开挖引起。  相似文献   

13.
黄土公路隧道浅埋段管棚注浆支护机理及监测分析   总被引:2,自引:0,他引:2  
为了探讨管棚注浆法在黄土公路隧道浅埋段中的支护机理和实际应用效果,对某黄土公路隧道右线出口段进行了地表沉降、拱顶下沉和水平收敛等的施工监测;在对现场监测数据进行分析的基础上,得出黄土公路隧道洞口浅埋段在管棚支护作用下拱顶下沉、水平收敛、地表沉降等的变化规律。研究结果表明:管棚注浆法能够显著抑制浅埋黄土地层的变形和拱顶下沉,减少隧道初始支护结构的变形和受力,避免浅埋黄土地层开挖中塌方现象的产生,保证了施工安全,为进一步分析黄土地区管棚注浆法的支护机理提供了参考依据,同时也为今后西北地区黄土公路隧道管棚注浆法的设计和施工提供了优化数据。  相似文献   

14.
为研究新建隧道对既有隧道的附加作用,本文通过现场监测,从附加应力、附加变形两方面研究了新建盾构隧道施工对既有隧道的附加作用。分析了既有隧道管片附加作用的动态变化规律,给出了附加作用与掌子面距离的关系,同时对管片附加作用的空间分布规律进行了分析。监测结果表明:①既有隧道管片的附加环向、径向应力远大于附加走向应力。②既有隧道拱顶、拱底处环向附加应力为拉应力,且拱顶处拉应力远远大于拱底处拉应力,两侧拱腰处为压应力,靠近新建侧附加压应力大于远离侧附加应力,前者约为后者的2倍。③既有隧道管片的走向附加应力是压应力,其中拱底处最大,近侧拱腰处次之,拱顶处较小,远侧拱腰处最小。④既有隧道管片的径向附加应力为压应力,大小为0.1~0.5 MPa,近侧拱腰处最大,远侧拱腰处次之,拱顶较小,拱底最小。其表现为“侧向大,竖向小”“近大远小,上大下小,不对称”的分布规律,即逆时针旋转90°的“非对称葫芦形”分布。⑤附加地表沉降呈对称U型沉降槽分布,影响半径为1倍埋深,影响角约45°,沉降最大点在隧道正上方,当掌子面到达监测断面时沉降速率最大。⑥既有隧道管片的附加净空收敛值依次经历了侧向收缩、缓慢扩张、快速扩张、缓慢回落,趋于稳定5个阶段。净空收敛值回落至峰值的三分之一,其变化范围在-1~3 mm。⑦既有隧道管片的附加拱底沉降依次为上浮、回落、快速上浮、快速回落、回落至初始状态,其变化范围为-1.0~2.5 mm。  相似文献   

15.
寒区季节性冻融导致围岩破碎层和松动圈的应力应变空间重构,为描述冻融影响下隧道二衬沿断面横向偏转的渐近演化,以吉林老爷岭寒区隧道入口和中段两个代表性断面的拱腰、拱墙390 d现场倾角变形数据为基础,结合衬砌开裂及偏转力学性态特征,应用数值模拟试验,综合分析正温、负温、冻季、融季4时期衬砌渐近性偏转、围岩破碎层及松动圈演化、衬砌应力应变特征等关键问题。研究表明:隧道入口段偏转随季寒交替变化显著,左拱墙和左拱腰测点倾角变化分别呈“倒V”及“下凹”状,偏转在融季响应滞后,在冻季响应超前,在冻融期则有“突变”趋势;而隧道中段受到的影响总体比入口处小,右拱腰在冻季、正温期有不同程度的波动偏转,左拱腰倾角则呈现“上凹”变化,其在融季有滞后偏转现象;计算松动圈直径满足冻融期>负温期>正温期,且隧道入口>隧道中段,通过数值模拟得到塑性区轮廓>计算松动圈,可见在衬砌冻融期的伤害比在其他时期更显著,应防范冻融期温度变化带来的衬砌偏转风险。  相似文献   

16.
 大量实测资料及试验表明,地表下沉曲线以及拱顶沉降、中墙应力、围岩塑性区分布具有明显的非对称性,即具有偏态性。对于此偏态问题,国内外学者以Weibull分布作为影响函数建立预计方法,利用地表移动的最终结果拟合,给出了偏态下沉预计的经验公式,但对偏态形成的原因却没有深入分析。结合城市浅埋大跨连拱隧道工程实例,针对已成功应用的CD,CRD工法等非对称开挖方法,根据现场监测数据进行反分析,采用数值模拟方法,对开挖沉降曲线的偏态性及其内在机制进行了深入研究。在此基础上,提出采取压浆弥补地层损失,设置隔水帷幕限制偏态沉降范围,非等参支护调节时空效应等具体防范对策;监控量测中,应耦合建构筑物的健全度,评估施工环境影响风险阀值,拟定控制标准,保证地下管线和地面建构筑物的安全。  相似文献   

17.
运用FLAC3D应变软化模型,模拟分析了共和隧道深埋段某断面围岩及支护结构稳定性以及围岩塑性区的变化特点,结果表明:(1)拱顶位移>拱腰位移>拱脚位移,拱顶最大位移量约20 mm,底板有膨胀现象,但其绝对位移较小,为4.5 mm;(2)随着掌子面的向前推进,模拟特征断面上围岩及支护结构的位移及应力均有所增加;当掌子面与特征断面之间的距离大于30 m时,特征断面上各特征点的位移及应力基本趋于稳定,拱顶、拱腰和拱脚的位移收敛值分别为18 mm、15 mm及10 mm,竖向应力收敛值分别为31 MPa、22.5 MPa及7.5 MPa,水平应力收敛值分别为8.1 MPa、6.0 MPa及2.5 MPa。  相似文献   

18.
以杭州市某大厦及其下部隧道工程为例,对该工程的施工顺序提出了两种施工方案,即先开挖隧道,后建大厦或先建大厦,后开挖隧道。通过地质勘查确定了该区域的岩土体参数,应用有限元软件模拟了两种方案对隧道拱顶沉降值的影响,发现方案二的沉降值仅为方案一的三分之一。其塑性变形区位于直墙外侧及其底部,需要对该位置进行加固以控制隧洞的纵向塑性变形。  相似文献   

19.
为了解决深埋老黄土隧道初期支护因围岩弱化挤压而破坏的现象,为隧道支护破坏整治提供依据,以阳山隧道出口深埋老黄土段为工程依托,对不同含水率下隧道变形规律进行了统计分析,然后综合采用变形反演、强度折减数值计算和实测支护内力规律对比的方法对初期支护的整体受力状态和受力规律进行了研究,最后通过数值计算对初期支护受力关键部位的破坏过程和破坏机理进行了分析。得到如下结论:(1)深埋老黄土隧道变形规律与围岩含水率相关,在围岩含水率低于老黄土塑限前,隧道的变形量小、稳定速度快、拱顶沉降大于水平收敛,含水率大于塑限后,隧道变形量显著增加、持续时间长、水平收敛大于拱顶沉降;(2)初期支护全环整体处于小偏心受压模式,受力关键部位为拱部,随着围岩的不断弱化,支护小偏心受压模式不变、内力逐渐增加,最大内力由拱腰转移至拱脚处;(3)在小偏心压力作用下支护结构为“压-剪”控制破坏,表现为混凝土表面压碎剥落、内部斜向剪切破坏,锁脚锚管的存在对结构破坏发展方向有引导作用,使得结构由“X”型对称剪切破坏转化为固定方向的斜截面剪切破坏。建议支护破坏整治方案采用可提高结构斜截面抗剪强度的加强措施,或采用限阻耗能型支护来释放围岩压力并减小结构内力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号