首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Bio‐based poly(trimethylene terephthalate) (PTT) and poly(ether esteramide) (PEEA) blends were prepared by melt processing with varying weight ratios (0–20 wt %) of ionomers such as lithium‐neutralized poly(ethylene‐co‐methacrylic acid) copolymer (EMAA‐Li) and sodium‐neutralized poly(ethylene‐co‐methacrylic acid) copolymer (EMAA‐Na). The blends were characterized by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), polarized light microscopy (PLM), and transmission electron microscopy (TEM). DSC and PLM results showed that EMAA‐Na increased the crystallization rate for PTT significantly, whereas EMAA‐Li did not enhance the crystallization rate at all. Specific interactions between PEEA and ionomers were confirmed by DSC and TEM. Electrostatic performance was also investigated for those PTT blends because PEEA is known as an ion‐conductive polymer. Here, we confirmed that both sodium and lithium ionomers work as a synergist to enhance the static decay performance of PTT/PEEA blends. Morphological study of these ternary blends systems was conducted by TEM. Dispersed ionomer domains were encapsulated by PEEA, which increases the interfacial surface area between PEEA and the PTT matrix. This encapsulation effect explains the unexpected synergy for the static dissipation performance on addition of ionomers to PTT/PEEA blends. This core–shell morphology can be predicted by calculating spreading coefficient for the ternary blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
This article presents the study of the modification of the particle/matrix interface region and its effects on the structure and dynamic mechanical behavior of polypropylene (PP)/hydrotalcite nanocomposites prepared by melt extrusion. The interface modification was promoted by combinying the organophillization of the hydrotalcite particles with blending the PP with a maleic anhydride‐grafted‐PP (PP‐g‐MAH) or a maleic anhydride‐grafted‐poly(styrene‐co‐ethylenebutylene‐co‐styrene) (SEBS‐g‐MAH). Sodium dodecyl sulphate was used to promote the organophillization of the hydrotalcite particles. X‐ray diffraction (XRD) and transmission electron microscopy (TEM) showed a partially exfoliated hydrotalcite structure, with an increasing exfoliation being achieved by adding a compatibilizer and organo‐modifying the particles. Values of the Young's modulus (E), storage modulus (E′), maximum tensile strength (σmax), neck propagation strength (σneck), and elongation at break (εb) were found to depend both on the nature of the particle matrix interface as well as on the type of compatibilizer. Also, nanocomposites prepared with the organophillized particles showed lower Tg and loss factor values. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

3.
We present a novel approach to improving organoclay exfoliation in a nonpolar matrix, polyethylene. High‐density polyethylene (HDPE) particles were modified by exposure to a reactive gas atmosphere containing F2 and O2. This treatment was aimed at increasing the polarity of the polymer with the formation of carboxyl, hydroxy, and ketone functionalities on the particle surface. The surface‐treated high‐density polyethylene (ST‐HDPE) particles were then melt‐mixed with an appropriate organoclay to form nanocomposites. Transmission electron microscopy (TEM), wide‐angle X‐ray scattering, stress–strain analysis, and Izod impact measurements were used to evaluate the nanocomposite morphology and physical properties. These data were compared to those of equivalent nanocomposites prepared from unmodified HDPE and high‐density polyethylene grafted with maleic anhydride (HDPE‐g‐MA). The nanocomposites prepared from the ST‐HDPE particles exhibited much better properties and organoclay dispersion than those prepared from unmodified HDPE. The level of reinforcement observed in ST‐HDPE‐based nanocomposites was comparable to, if not better than, that seen in HDPE‐g‐MA‐based nanocomposites. However, a comparison of the TEM micrographs suggested better organoclay exfoliation in HDPE‐g‐MA than the current version of ST‐HDPE. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2980–2989, 2006  相似文献   

4.
This study focused on the crystallization promotion of poly(trimethylene terephthalate) (PTT), with an aim at engineering thermoplastics applications. The effects of organic sodium (Na) salts, including Na stearate, Na benzoate, disodium‐p‐phenolsulfonate (2Na‐p‐PS), disodium‐p‐hydroxybenzoate (2Na‐p‐HB), and the sodium ionomer of poly(ethylene‐co‐methacrylic acid) (Na‐EMAA), were investigated as nucleating chemical agents with differential scanning calorimetry and capillary viscometry. For comparison, the effect of fine talc powder was also examined. The chemical agents were generally more effective than fine talc powder. Na stearate and Na benzoate caused large‐scale decomposition of PTT. 2Na‐p‐PS was quite thermally stable and caused little decomposition. 2Na‐p‐HB was the most efficacious of the nucleating chemical agents and caused mild decomposition. Na‐EMAA was the most thermally stable and induced an increase in melt viscosity. A remarkable improvement in the crystallization rate of PTT was successfully attained at a minimum polymer decomposition cost by the introduction of a suitable amount of 2Na‐p‐PS, 2Na‐p‐HB, or Na‐EMAA or by the concurrent proper incorporation of both of the latter two agents. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 590–601, 2004  相似文献   

5.
Nanocomposites of bentonite with polyaniline (PANI), poly(methacrylic acid) (PMAA), and poly(aniline‐co‐methacrylic acid) (PANI‐co‐PMAA) were prepared by in situ intercalative polymerization technique. The nanocomposites were characterized by FTIR and UV–visible spectroscopies, XRD, SEM, TEM, as well as TG‐DTA studies. The in situ intercalative polymerization of PANI, PMAA, and PANI‐co‐PMAA within bentonite layers was confirmed by FTIR, XRD, SEM, as well as TEM studies. XRD confirmed the intercalation of polymers and copolymer in bentonite. The average particle size of the nanocomposites was found to be in the range of 250–500 nm. The thermal stability was found be the highest for PANI‐co‐PMAA‐bentonite. The swelling behavior studies suggest that these nanocomposites hold potential for their utilization in absorption of toxic materials from waste water. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3299–3306, 2007  相似文献   

6.
Poly(styrene‐co‐methacrylic acid) containing 29 mol % of methacrylic acid (SMA‐29) and poly(isobutyl methacrylate‐co‐4‐vinylpyridine) containing 20 mol % of 4‐vinylpyridine (IBM4VP‐20) were synthesized, characterized, and used to elaborate binary and ternary nanocomposites of different ratios with a 3% by weight hexadecylammonium‐modified bentonite from Maghnia (Algeria) by casting method from tetrahydrofuran (THF) solutions. The morphology and the thermal behavior of these binary and ternary elaborated nanocomposites were investigated by X‐ray diffraction, scanning electron microscopy, FTIR spectroscopy, differential scanning calorimetry, and thermogravimetry. Polymer nanocomposites and nanoblends of different morphologies were obtained. The effect of the organoclay and its dispersion within the blend matrix on the phase behavior of the miscible SMA29/IBM4VP20 blends is discussed. The obtained results showed that increasing the amount of SMA29 in the IBM4VP20/SMA29 blend leads to near exfoliated nanostructure with significantly improved thermal stability. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
The phase morphology and the mechanism of the compatibilization in ternary blends of PET/EBM (ethylene buten rubber)/ionomer (partially neutralized ethylene and methyl methacrylic acid copolymer, EMAA) are examined. Applying the repulsion idea in random copolymer, the ionomer was selected as an encapsulating agent to compatibilize PET/EBM blend. As anticipated, the ionomer can encapsulate EBM in PET matrix and effectively compatibilize PET and EBM. The results of droplet sandwich experiments verified that the actual driving force for the encapsulation is wettability. In addition, this wettablility was found to be realized by the contribution of the polar and nonpolar units in the ionomer: The polar units decrease the interfacial tension between PET and the ionomer, and the nonpolar units decrease that between EBM and the ionomer. The metal ions in the ionomer have little influence on the wettability, and consequently EMAA can encapsulate EBM even when unneutralized. The efficiency of the compatibilization, on the other hand, is not determined by the wettability only, and the metal ions play an important role. EMAA can effectively compatibilize EBM and PET only when neutralized. This compatibilization effectiveness of the ionomer is supposedly due to the strong interaction between PET and the metal ions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1567–1576, 2004  相似文献   

8.
Widely dispersed low density polyethylene (LDPE) based nanocomposites (Nc's) were obtained in the melt state thanks to their compatibilization with a zinc ionomer of poly(ethylene‐co‐methacrylic acid) (Pema‐Zn). The variables probed were the ionomer and organoclay content ranging from 0 to 20%, and from 0 to 10%, respectively. The TEM images showed that the organoclay is widely exfoliated. Furthermore, we report for the first time that the organoclay is concentrated in irregular zones. Taking into account the compatibility between MMT and the ionomer, it is plausible that the ionomer clusters are also concentrated in the organoclay‐rich regions. This heterogeneous microstructure has a positive effect on the mechanical properties since the Nc's are ductile, and the modulus increases were among the largest reported for LDPE, attaining a 160% increase with a 10% montmorillonite (MMT) content. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
A series of new complexes of poly(styrene‐co‐methacrylic acid) with Ln(III) (Ln = La, Eu, Tb) were synthesized and well characterized by means of elemental analysis, FTIR, differential scanning calorimetric (DSC) analysis, TG‐DTA analysis, X‐ray diffraction (XRD), and fluorescence determination. The elemental analysis and FTIR studies showed that a large part of carboxylic groups on the side chain of the copolymer are coordinated with Ln(III) ions. The TG‐DTA and DSC analysis results indicated that the complexes have good thermal stability. XRD experiments showed that copolymers and the complexes are amorphous. Among these complexes, Eu(III) complexes and Tb(III) complexes exhibit characteristic fluorescence with comparatively high brightness and good monochromaticity. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Compatibilization of blends of linear low‐density polyethylene (LLDPE)–poly(methyl methacrylate) (PMMA) and LLDPE–copolymer of methyl methacrylate (MMA) and 4‐vinylpyridine (poly(MMA‐co‐4VP) with poly(ethylene‐co‐methacrylic acid) (EMAA) have been studied. Mechanical properties of the LLDPE–PMMA blends increase upon addition of EMAA. In order to further improve interfacial adhesion of LLDPE and PMMA, 4‐vinyl pyridine units are introduced into PMMA chains, or poly(MMA‐co‐4VP) is used as the polar polymer. In LLDPE–poly(MMA‐co‐4VP)–EMAA blends, interaction of MAA in EMAA with 4VP of poly(MMA‐co‐4VP) causes a band shift in the infrared (IR) spectra. Chemical shifts of N1s binding energy in X‐ray photoelectronic spectroscopy (XPS) experiments indicate a transfer of proton from MAA to 4VP. Scanning electron microscopy (SEM) pictures show that the morphology of the blends were improved upon addition of EMAA. Nonradiative energy transfer (NRET) fluorescence results attest that there exists interdiffusion of chromophore‐labeled LLDPE chains and chromophore‐labeled poly(MMA‐co‐4VP) chains in the interface. Based on experimental results, the mechanism of compatibilization is studied in detail. Compatibilization is realized through the interaction between MAA in EMAA with 4VP in poly(MMA‐co‐4VP). © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 967–973, 1999  相似文献   

11.
Fibers of high density polyethylene (HDPE)/organically modified hydrotalcite (LDH) were produced by melt intercalation in a two‐step process consisting of twin‐screw extrusion and hot drawing. The optimum drawing temperature was 125°C at which the draw ratios up to 20 could be achieved. XRD analysis revealed intercalation with a high degree of exfoliation for the composites with 1–2% of LDH. Higher thermal stability of nanofilled fibers was confirmed by TGA analysis. DSC data indicated that dispersed LDH particles act as a nucleating agent. Crystallization kinetics of the HDPE matrix in the composite fibers is characterized by two transition temperatures, that is, for Regimes I/II at 123°C and for Regimes II/III ranging between 114–119°C as a function of the nanocomposite composition. Fibers with 1–2% of LDH show for the drawing ratios up to 15 a higher elastic modulus, 9.0–9.3 GPa (with respect to 8.0 GPa of the neat HDPE), maintain tensile strength of 0.8 GPa and deformation at break of 20–25%. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40277.  相似文献   

12.
Rhutesh K. Shah 《Polymer》2007,48(4):1047-1057
Nanocomposites were prepared by melt mixing ethylene/methacrylic acid copolymers and organoclays, which were compared to equivalent composites prepared from low-density polyethylene (LDPE) and a sodium ionomer of poly(ethylene-co-methacrylic acid). The effects of matrix modification and organoclay structure on the morphology and properties of these nanocomposites were evaluated using stress-strain analysis, wide-angle X-ray scattering (WAXS), and transmission electron microscopy coupled with particle analysis. With all four polymers, the use of a two-tailed organoclay, M2(HT)2, led to the formation of more exfoliated nanocomposites than a one-tailed organoclay, M3(HT)1. Nanocomposites prepared from ethylene/methacrylic acid copolymers revealed better exfoliation compared to similar composites prepared from LDPE. It seems that the presence of relatively small quantities (1.3-3.1 mol%) of the polar methacrylic acid monomer aids in improving the organoclay exfoliation efficiency of these polymers. Nanocomposites prepared from the sodium ionomer of poly(ethylene-co-methacrylic acid) exhibited the highest levels of organoclay exfoliation compared to all other polymers examined in this study. However, from the observations made in this study, it was not possible to determine conclusively the relative interaction of carboxyl acid groups versus the salt form with the organoclay and, thus, their influence on exfoliation; additional studies will be needed to reach a conclusion on this important point.  相似文献   

13.
Toughening of poly(lactic acid) (PLA) was studied by reactive blending PLA with ethylene/n-butyl acrylate/glycidyl methacrylate (EBA-GMA) terpolymer and zinc ion-containing ionomer. The ionomer was prepared by neutralizing the ethylene/methacrylic acid copolymer (EMAA), i.e., ionomer precursor, with ZnO. The reactive interfacial compatibilization between PLA and EBA-GMA and the crosslinking of EBA-GMA during blending was studied in detail. Fractography and FT-IR analysis indicated that both the degree of neutralization (DN) of ionomer and methacrylic acid (MAA) content of ionomer precursor exhibited significant effects on interfacial compatibilization. Dynamic mechanical analysis also suggested that the crosslinking level of EBA-GMA varied with these two factors. Particle size and polydispersity of the dispersed phase were measured by image analysis of TEM micrographs of the ternary blends and correlated with the impact strength of the blends and the characteristics of the ionomer. Ionomers derived from precursor of high MAA content and/or having high DN tended to yield superior impact strength of the PLA blends.  相似文献   

14.
The recycling process of postconsumer aseptic packaging composed of paper, low‐density polyethylene (LDPE), and aluminum consists of recovering paper, the major component, through centrifugation. The remaining mixture of LDPE and aluminum, a recycled composite called PEAL, offers an interesting combination of properties, especially because of the presence of a small amount of poly(ethylene‐co‐methacrylic acid (EMAA). In this work, this composite is characterized, and the properties are compared with those of pure LDPE and EMAA, the polymers that constitute the recycled material. PEAL is around 15% aluminum particles with different shapes and sizes. The composite presents higher thermooxidative stability, higher crystallinity, lower impact resistance, and higher tensile strength than the other olefin polymers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3183–3191, 2006  相似文献   

15.
Organically modified montmorillonite (org‐MMT) and high‐density polyethylene (HDPE) grafted with silane groups (HDPE‐g‐silane) were melt compounded to give HDPE‐g‐silane‐blend‐org‐MMT nanocomposites. X‐ray diffractometry was performed to investigate the intercalation effect. Transmission electron microscopy was applied to observe the dispersion of org‐MMT layers in HDPE matrices. The results indicate that an intercalated structure can be easily obtained in HDPE‐g‐silane‐blend‐org‐MMT nanocomposites. Furthermore, positron annihilation lifetime spectroscopy was used to characterize the microstructure of the composites. It is found that the ortho‐positron (o‐Ps) intensity for HDPE‐g‐silane is decreased by approximately 10% with a narrower lifetime distribution than that for HDPE. With increasing org‐MMT concentration, the o‐Ps intensity I3 increases for HDPE‐g‐silane‐blend‐org‐MMT nanocomposites; however, for HDPE‐blend‐org‐MMT composites I3 decreases. It is found that HDPE composites with good dispersion can be obtained following appropriate modification of the HDPE. And silane grafting has an effect on the free volume of the HDPE nanocomposites. Copyright © 2007 Society of Chemical Industry  相似文献   

16.
The influence of granulometry and organic treatment of a Brazilian montmorillonite (MMT) clay on the synthesis and properties of poly(styrene‐con‐butyl acrylate)/layered silicate nanocomposites was studied. Hybrid latexes of poly(styrene‐co‐butyl acrylate)/MMT were synthesized via miniemulsion polymerization using either sodium or organically modified MMT. Five clay granulometries ranging from clay particles smaller than 75 μm to colloidal size were selected. The size of the clay particles was evaluated by specific surface area measurements (BET). Cetyl trimethyl ammonium chloride was used as an organic modifier to enhance the clay compatibility with the monomer phase before polymerization and to improve the clay distribution and dispersion within the polymeric matrix after polymerization. The sodium and organically modified natural clays as well as the composites were characterized by X‐ray diffraction analysis. The latexes were characterized by dynamic light scattering. The mechanical, thermal, and rheological properties of the composites obtained were characterized by dynamical‐mechanical analysis, thermogravimetry, and small amplitude oscillatory shear tests, respectively. The results showed that smaller the size of the organically modified MMT, the higher the degree of exfoliation of nanoplatelets. Hybrid latexes in presence of Na‐MMT resulted in materials with intercalated structures. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Summary The highdensitypolyethylene (HDPE)/montmorillonite (MMT) nanocomposites were prepared by melt blending using twin screw extruder with two step process. The master batches were manufactured by melt compounding with maleic anhydride grafted HDPE (HDPE-g-MAH) and MMT. The HPDE/MMT master batches were subsequently mixed with HDPE. The blown nanocomposite films were obtained by a single screw extruder attached film blowing and take-off unit. The MMT dispersion in the nanocomposite films was characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). The influence of MMT on the crystallinity, thermal properties and mechanical properties as a function of compatibilizer was investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and universal testing machine, respectively. X-ray and TEM images showed the partially exfoliated nanocomposites which have the 5:1 – 20:1 ratios of HPDE-g-MAH and MMT. The thermal and mechanical properties of nanocomposites were enhanced by increasing the contents of MMT and in the presence of compatibilizer.  相似文献   

18.
This work studied the morphology and physical properties of nanocomposites of different ethylene copolymers and functionalized polyethylenes with two different types of organoclays, to assess the potential application of these fillers as reinforcing components in the design of polyethylene and other polyolefinic based nanocomposites with enhanced properties. A polyethylene‐grafted‐maleic anhydride (PEMA), a poly(ethylene‐co‐acrylic acid), a poly(ethylene‐co‐vinyl acetate), and an ionomer of poly(ethylene‐co‐methacrylic acid) containing a small fraction of polyamide 6 were used to prepare nanocomposites by melt compounding in internal mixer. Two different types of commercial clays were used to obtain nanocomposites with the same organoclay content (5 wt %), i.e., an organomodified montmorillonite and an organomodified kaolinite. The morphology was evaluated by wide angle X‐ray scattering, scanning electron microscopy, transmission electron microscopy, and optical microscopy. The thermal, mechanical and barrier properties were evaluated by differential scanning calorimetry and thermogravimetric analysis, tensile tests and oxygen transmission rate experiments, respectively. From the results, it was seen that PEMA and the ionomer are the best polymer matrices to disperse both organoclays under the conditions applied. Kaolinite and montmorillonite appeared to be dispersed in the nanorange, however, higher aspect ratio was observed for montmorillonite. The best improvements in thermal degradation and in mechanical reinforcement were shown for organomodified kaolinite nanocomposites. But the best improvements in thermo‐oxidative degradation and in oxygen barrier were seen for the nanocomposites with organomodified montmorillonite. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
The effect that polymer molecular weight has on the dispersion of relatively polar montmorillonite (MMT) in nonpolar, unmodified high density polyethylene (HDPE) was examined. Polymer layered silicate (PLS) nanocomposites were prepared via melt compounding in a single screw extruder using three unmodified HDPE matrices of differing molecular weight and organically modified MMT (organoclay) in concentrations ranging from 2 to 8 wt%. The weight average molecular weights (M W) of the HDPE matrices used ranged from 87,000 to 460,000 g/mol. X‐ray diffraction (XRD), tensile testing, dynamic mechanical thermal analysis (DMTA), and dynamic rheometry were performed on these nanocomposites. Nanocomposites generated from the high molecular weight (HMW) HDPE matrix exhibited increased intercalation of the MMT as shown by XRD and greater improvements in the Young's modulus when compared with nanocomposites generated from the low (LMW) and middle molecular weight (MMW) matrices. DMTA measurements carried out in torsion showed that the increase in shear modulus of the HMW nanocomposites was not as great as that of the LMW and MMW counterparts as observed from a lower percentage enhancement in the storage modulus (G′) and estimated heat distortion temperature (HDT). This was attributed to the higher degree of mechanical anisotropy in the HMW nanocomposites. POLYM. COMPOS., 28:499–511, 2007. © 2007 Society of Plastics Engineers  相似文献   

20.
Low‐density polyethylene (LDPE)/silicate nanocomposites were prepared by the melt compounding and solution blend methods using unmodified LDPE polymer and layered silicates with different aspect ratio. X‐ray diffraction (XRD) analysis performed on composites obtained by dispersing the organosilicates in molten LDPE evidenced an exfoliated or partially exfoliated structure for the low aspect ratio silicate (laponite) in contrast to the high aspect ratio silicate (montmorillonite), which led to the formation of intercalated nanocomposites. With regard to the preparation method, the melt compounding method was more effective in forming exfoliated/highly intercalated LDPE nanocomposites compared with the solution blend method (using CCl4 as a solvent). A gradual increase in crystallization temperatures (Tc) with increasing laponite content for LDPE‐organolaponite nanocomposites was revealed by differential scanning calorimetry (DSC) measurements. Thermogravimetric analysis and tensile measurements results indicated that thermal stability and elastic modulus increment were more prevalent for nanocomposites prepared using organomontmorillonite as filler. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号