首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
以现有750 m~3高炉为平台,通过炉顶煤气循环、氧气鼓风进行炼铁基础研究与工艺技术开发,提出了以现有高炉改氧气高炉的工业试验方案。采用高富氧鼓风,高炉煤气自身循环利用,高炉煤气CO_2脱除技术的清洁生产工艺,重视二次能源的循环利用,降低高炉的直接还原度,降低燃料消耗,达到减少CO_2排放的目的,以获得先进的工序能耗指标和良好的经济效益。对物料平衡和热量平衡进行了理论计算,对生铁成本进行了对比分析。  相似文献   

2.
基于相间传热传质和反应动力学理论,建立了由高炉本体一维模型、风口回旋区燃烧模型、CO2脱除单元模型和煤气预热单元模型组成的炉顶煤气循环氧气高炉工艺综合模型,研究了该新型炼铁工艺的可行性,分析了关键参数对综合能耗和碳排放的影响。研究结果表明:下排风口循环煤气流量需要维持在一定范围内来保持合理的理论燃烧温度;低温和高还原势的炉内环境有利于抑制焦炭气化反应,加强铁氧化物间接还原;氧气高炉的煤气输出量较少,但热值很高,能达到传统高炉煤气热值的2倍以上;焦炭消耗的减少显著降低了氧气高炉的输入总能量,即便是与副产煤气全部有效利用的传统高炉相比,氧气高炉仍具有综合能耗较低的优势;由于氧气鼓风和CO2分离过程消耗大量电力,氧气高炉的CO2间接排放要高于传统高炉,而CO2捕集和封存可显著降低氧气高炉系统的CO2直接排放;与传统高炉相比,氧气高炉系统的CO2直接排放可降低57.1%~59.0%,净排放可降低32.9%~40.4%,节碳减排效果显著。  相似文献   

3.
加拿大冶金专家发明的这种新工艺仍用传统的高炉作为反应容器,通过风口喷入非炼焦煤达吨铁300kg以上,使焦比降到200kg以下,接近维持炉内料柱必要透气性的最少焦炭用量值,获得以煤代焦的重大进展。可使高炉的生产能力提高1倍以上。 新工艺采用部分炉顶煤气再循环的方法,即把高炉煤气经过碳丙脂吸附处理后脱除其中的CO_2和水;然后一部分煤气作为喷吹煤粉的载气,与鼓入的常温氧气混合。使风  相似文献   

4.
 为解决氧气高炉循环煤气CO2脱除和加热过程中的析碳问题,提出了一种利用CO2炼钢对煤气进行改质和加热的方法,并通过热力学计算探讨了铁水和煤气成分对炼钢过程的影响,得到了合理的循环煤气处理方案。结果表明,CO2炼钢反应总体上是大量吸热的,需要外部热源提供热量;以氧气高炉炉顶煤气为氧化剂时,炼钢温度范围内铁水中碳的脱除限度在0.02%以下,脱除率高于99%;煤气处理能力和改质煤气成分受铁水成分影响,并且铁水中碳含量的影响更大;通过CO2炼钢与变压吸附2种工艺的结合,可满足氧气高炉对循环煤气量和温度的需求。  相似文献   

5.
从高炉冶炼发展趋势出发,为提高副产品的应用价值及强化高炉生产过程、分析了煤气脱除 CO_2的意义和经济效果。按当前鞍钢高炉煤气组成,脱除 CO_2为30%,并以此加入高炉鼓风中,其量按5%计算,年增效益2500万元,如果 CO_2以产品出售,净利润为1亿元。  相似文献   

6.
捕集高炉煤气中的CO_2可有效减少钢铁联合企业碳排放,提高高炉煤气热值。为掌握氨法吸收高炉煤气中CO_2过程的传热传质规律,建立了吸收塔内气液两相CO_2质量传递和守恒、气液两相热量传递和守恒的控制方程及其边界条件的数学模型,分析了填料层高度、氨水浓度、液气比等因素对吸收性能的影响。结果表明:模型可以用来分析高炉煤气CO_2的氨法吸收过程的传热传质规律,氨水浓度和填料层高度对脱除率影响较大。研究为高炉煤气碳捕集提供了理论基础。  相似文献   

7.
对氧气高炉进行了数值模拟,数值模拟结果表明氧气高炉炉顶煤气循环利用,可以降低燃料消耗5%左右,炉顶煤气CO2进行储存及资源化利用,可以减少CO2排放56%以上。通过分析氧气高炉的工业化试验情况,说明氧气高炉要实现低成本生产,尚需要解决高效喷吹及全流程优化控制技术,循环煤气加热技术,炉顶煤气CO2脱除技术和CO2储存及资源化利用技术四个关键问题,同时为发展氧气高炉炼铁新工艺提出建议。  相似文献   

8.
为分析氧气高炉对炼铁系统的影响,利用氧气高炉综合数学模型,获得了2种典型氧气高炉流程的基本工艺参数,并主要分析了氧气高炉对炼铁系统燃料结构与煤气流平衡的影响。结果表明:氧气高炉降低了吨铁燃耗,同时提高了煤粉在燃料消耗中的比率;随着炉缸循环煤气预热温度升高,氧气高炉煤气供给量与炼铁系统需求量都呈下降趋势,其中单排风口工艺输出煤气量能满足炼铁系统内部需求并有较大剩余,双排风口工艺炉顶煤气供应由盈余转为短缺,但此短缺量较小,可以用少量焦炉煤气补足。在此分析基础上,提出了一种氧气高炉条件下炼铁系统工艺流程,有望为氧气高炉工业化应用提供一定参考。  相似文献   

9.
结合风口回旋区燃烧和炉外煤气预热、脱除和循环的平衡关系,建立了氧气高炉一维气固换热与反应动力学模型,并采用传统高炉的运行和解剖数据对模型进行了验证分析.通过模型研究了氧气含量和上部循环煤气流量对氧气高炉炉内过程变量的影响规律.结果表明:氧气含量偏低和上部循环煤气流量不足时,会降低铁矿石还原效果,炉渣内出现大量未还原铁氧化物;氧气含量和上部循环煤气流量的提高可以有效提高炉内CO含量和铁矿石还原速度,但提高上部循环煤气流量会大幅提升炉顶煤气温度,增大热量损失.与传统高炉相比,氧气高炉内CO含量提高1.0~1.5倍,炉内气体还原性更强;铁矿石还原完成位置提高1.49 m,全炉还原反应速度更快;直接还原度降低55.2%~79.2%,炉内直接还原反应消耗的碳量更少.   相似文献   

10.
张泽栋  唐珏  储满生 《钢铁》2023,(9):81-91+126
顶煤气循环氧气高炉工艺是一种新型高炉炼铁工艺,具有大幅降低燃料比、减少CO2排放和提高铁水生产效率等优点。对于氧气高炉的内部生产状态、整体生产指标、能量利用以及经济效益等进行了深入的系统性研究。通过顶煤气循环氧气高炉多流体模型,对风口喷吹循环煤气与风口炉身同时喷吹循环煤气2种路线下不同操作参数对氧气高炉的冶炼状态、生产指标、氧气高炉的能量利用效率以及经济效益的影响进行了研究对比。结果表明,随着理论燃烧温度的增加,氧气高炉焦比上升,产量进一步增大,高炉的热力学完善度和■效率降低,氧气高炉的综合效益增加。在只有风口喷吹循环煤气的条件下,与理论燃烧温度2 000℃的案例相比,理论燃烧温度为2 184℃时,焦比上升至243.9 kg/t,产量增加至5 538.3 t/d,热力学完善度由90.69%降低至88.30%,经济效益由13 540万元/a上升至16 252万元/a。与风口喷吹循环煤气的路线相比,风口和炉身同时喷吹循环煤气的顶煤气循环氧气高炉具有更大的产量、节焦量、热力学完善度、■效率以及更高的综合经济效益。在理论燃烧温度为2 184℃,炉腹煤气流量为3 881 m...  相似文献   

11.
高炉超量喷吹煤粉及炉顶煤气部分循环工艺可行性研究   总被引:2,自引:0,他引:2  
提出一种大量喷吹煤粉,并保持高置换比的高炉炼铁新工艺。其特点是风口用高浓度富氧鼓风促进大量煤粉燃烧,而炉顶煤气回收脱除CO_2后再循环喷入炉身,保证高炉间接还原。对新工艺的三个技术关键:煤粉燃烧、炉身间接还原及煤气净化技术进行了实验室研究及数学模拟试验,论证了新工艺在我国条件下技术上的可行性和经济上的合理性。结论为新工艺在燃料消耗、焦比、生产率及操作费用各方面均优于常规高炉。  相似文献   

12.
氧气高炉喷吹焦炉煤气数学模型   总被引:1,自引:0,他引:1  
 为降低氧气高炉炼铁流程中循环煤气脱除CO2及煤气预热成本,提出了氧气高炉喷吹焦炉煤气炼铁流程,并建立了新流程能质平衡数学模型,应用该模型分别对传统高炉、传统高炉喷吹焦炉煤气、氧气高炉(鼓风氧体积分数为30%、40%、50%、100%)喷吹焦炉煤气炼铁流程主要技术参数进行计算并对比。结果表明,传统高炉喷吹少量焦炉煤气(30 m3/t)可降低燃料比13 kg/t,焦炉煤气置换焦炭的置换比为0.433 kg/m3,但是对其他参数影响不大。氧气高炉喷吹焦炉煤气流程随着富氧率提高,炉内还原势提高,CO和氢利用率下降,炉内存在还原剂表观过剩,非全氧鼓风条件下炉内没有发生氮气富集。新流程外供煤气总热值为3 000 MJ/t左右,与传统高炉相比变化不大,对现有钢铁联合企业煤气供需平衡影响较小。全氧高炉喷吹焦炉煤气炼铁流程相较于目前的高炉炼铁流程可节焦43%,增煤33%,总燃料比降低20%。  相似文献   

13.
高炉煤气精脱硫技术的半工业试验   总被引:1,自引:1,他引:0  
戴晓天  陈乾业  齐渊洪  严定鎏 《钢铁》2021,56(12):153-159
 高炉煤气中有机硫(主要是COS)含量高,无机硫含量低,硫的脱除难度大。针对以上特点,在山东某金属公司进行了干法精脱硫工艺的半工业试验。具体的工艺方案为,脱硫设备布置在高炉TRT设备之后,高炉煤气通过旁通管从高炉煤气管网上接入脱硫试验装置。水解和脱硫反应器均为填充床形式,采用“一级水解+脱硫”串联“二级水解+脱硫”的两级串联设计方案。在相应的水解和脱硫反应器中分别填充一种改进型的Al2O3基低温水解催化剂和氧化铁基脱硫剂。水解催化剂促使煤气中的有机硫(COS)与水蒸气反应生成H2S,再由脱硫剂与H2S反应生成Fe2S3,从而实现煤气中硫的脱除。在半工业试验中,进入脱硫设备的煤气流量为400 m3/h,煤气温度为80~100 ℃,COS的体积分数约为70%,H2S的体积分数约为25%,煤气中硫浓度为145 mg/m3。经过300 h的连续试验,结果表明,该脱硫工艺全过程废水零排放;高炉煤气中有机硫(COS)转化为无机硫(H2S)的转化率约为99%;煤气中硫分的脱除率大于96%;能够保证煤气燃烧后烟气中SO2浓度小于10 mg/m3。  相似文献   

14.
根据整体及各区域的物理化学约束条件建立了氧气高炉工艺综合数学模型.通过模型的计算结果对能量在不同区域的利用情况进行了分析.得出结论如下:氧气高炉无煤气循环流程的一次能耗很高,燃料比在600 kg/tHM以上,并且无法实现高温区和固体炉料区之间的能量匹配.炉顶煤气循环后,可以实现能量在高温区和固体炉料区的同时平衡;在同时满足全炉热平衡和区域热平衡的条件下,氧气高炉炉身喷吹循环煤气流程的理论燃烧温度过高,而炉缸喷吹循环煤气流程的理论燃烧温度偏低;对于氧气高炉炉身、炉缸同时喷吹循环煤气流程,随着循环煤气量的增大,焦比升高,煤比降低,理论燃烧温度可以维持在合理的范围内.  相似文献   

15.
1.问题的提出随着高炉冶炼过程日益强化,炉内煤气能量利用日趋完善,致使煤气热值下降。鉴于目前在一些大、小化肥厂用碳酸丙烯酯吸收CO_2已有成熟经验,因此建议采用碳酸丙烯酯来富化高炉煤气。2.生产原理及流程碳酸丙烯酯是优良的极性溶剂,能溶解CO_2、H_2S和有机物,溶解CO_2的能力比水大4~5倍,其平衡溶解度服从亨利定律,提高系统压力,可以达到净化粗煤气的目的(脱碳、脱硫过程)。反之,对于溶解了酸气组分的溶剂,可通过降低压力达到解析的  相似文献   

16.
利用气化炉一氧气高炉炼铁流程数学模型分析了工艺参数对高炉焦比、煤耗、总能耗等的影响规律。计算结果表明:随着氧气浓度的提高,高炉焦比逐步降低,当氧气浓度为100%时,流程可节能7.0%;随循环煤气温度的提高,高炉焦比略有减少,当循环煤气温度为1473K时,流程可节能8.5%。  相似文献   

17.
工艺参数对氧气高炉能耗的影响规律   总被引:4,自引:0,他引:4  
建立了氧气高炉煤气不循环利用流程,炉身喷吹循环煤气流程和炉缸喷吹循环煤气流程数学模型,分析了工艺参数对氧气高炉能耗的影响,结果表明:煤气不循环利用流程一次能耗远远高于煤气循环利用流程,不适合进行工业化生产;金属化率对氧气高炉能耗影响很大,金属化率每升高5%,吨铁焦比降低约37kg;煤气循环利用流程各煤气量匹配要合理,炉...  相似文献   

18.
从高炉稳定顺行,提高喷煤比,搞好余热余能的回收利用,减少煤气、氧气及高炉鼓风的放散率,开发高炉炉渣显热回收技术等几方面对武钢高炉冶炼节能进行了简要的论述。  相似文献   

19.
《钢铁研究》2003,31(3)
据俄刊《冶金工作者》报道加拿大冶金专家发明了一种高喷煤量氧气炼铁新工艺。该工艺仍用传统的高炉作为反应容器 ,通过风口喷入非炼焦煤可达到 3 0 0kg t以上 ,使焦比降至 2 0 0kg t以下 ,接近维持炉内料柱必要透气性的最少焦炭用量值 ,获得了以煤代焦、煤为主而改变了炼铁工序能源结构的重大进展 ,同时还提高了高炉的生产能力。新工艺采用部分炉顶煤气再循环的方法 ,即把高炉煤气经过碳丙脂吸附处理后 ,脱除其中的二氧化碳和水 ;然后一部分煤气作为喷吹煤粉的载气 ,与鼓入的常温氧气结合 ,使风口前端的燃烧温度控制在2 5 0 0℃以下 ;另一…  相似文献   

20.
氧气高炉(以430m^3高炉为例)综合数学模型分析计算表明,氧气高炉采用全氧鼓风、顶煤气循环及煤气加热等技术,可提高喷煤量、降低焦比、提高生产效率,其工序能耗较传统高炉相比降低6.27%。通过对氧气高炉的煤气重整能耗和生产工序能耗的分析对比,认为氧气高炉的总体综合能耗较传统高炉具有一定优势,发展氧气高炉有利于节能降耗、降低环境污染,实现可持续发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号