首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Recently, robot structures handling liquid crystal display (LCD) glass panels are increased in size as the size of LCD is increased. In order to handle large LCD panels, the robot structures should have high stiffness to reduce the deflection of robot end effector under the weights of LCD. The LCD manufacturing industries have a trend to employ double arm type robots rather than single arm type robots to increase productivity. Currently, two aluminum wrist blocks that have different configurations not to interfere with each other are mounted on the robot arms. The aluminum wrist block becomes one of the largest deflection sources as the size of the robot structures increases. Since the size of the wrist block can not be increased indefinitely to increase the stiffness due to the limitation of driving motor power, the best way to increase the stiffness of the wrist block is to employ carbon fiber epoxy composite material for structural material of the wrist block because the carbon fiber epoxy composite material has much higher specific stiffness and damping than aluminum. In this work, the two wrist blocks for the double arm type robot for handling large LCD glass panels were designed and manufactured using foam core sandwich structure. Finite element analysis was used along with an optimization routine to design the composite wrist blocks. Box type sandwich structures were employed to reduce shear effect arising from the low modulus of polyurethane foam core. The weight reduction of the composite wrist blocks was more than 50% compared to those of comparable aluminum wrist blocks and found that the composite wrist blocks had much improved performances compared to those of the aluminum wrist blocks from the static and dynamic tests.  相似文献   

2.
Composite sandwich constructions are widely employed in various light weight structures, because composite sandwich panels have high specific stiffness and high specific bending strength compared to solid panels. Since sandwich panels are basically unsuited to carry localized loads, the sandwich structure should provide joining inserts to transfer the localized loads to other structures.In this work, the load transfer characteristics of the partial type insert for composite sandwich panels were investigated experimentally with respect to the insert shape. The static and dynamic pull out tests of the composite sandwich panels composed of an aluminum honeycomb core, two laminates of carbon fiber/epoxy composite and aluminum insert, were performed. From the experiments, the effect of the insert shape on the mechanical characteristics of composite sandwich panels was evaluated.  相似文献   

3.
Development of a satellite structure with the sandwich T-joint   总被引:1,自引:0,他引:1  
In this study, a monocoque satellite structure composed of many composite sandwich panels, which consist of two carbon fiber/epoxy composite faces and an aluminum honeycomb core, was designed to reduce structural mass and to improve static and dynamic structural rigidity. To join composite sandwich panels with T-shape joints, a new I-shape side insert, which was fixed inside the composite sandwich panel edge with film adhesive, was suggested. The composite sandwich panels were assembled with bolts using the through-the-thickness insert and the I-shape side insert. The flatwise tensile and compressive tests of the composite sandwich panels were performed with respect to the bonding pressure between the composite face and the aluminum honeycomb core to achieve an optimal bonding pressure. To investigate the joint characteristics of the composite faces and the I-shape side insert, cleavage peel tests were performed with respect to the bonding thickness. Also, a finite element model of the composite sandwich T-joint with the I-shape side insert was developed from experimental results of the impulse response tests and composite sandwich T-joint static tests. From the finite element analysis, the structural reliability of the monocoque composite sandwich satellite structure was verified.  相似文献   

4.
The material used for robot structures should have specific stiffness (stiffness/density) to give positional accuracy and fast maneuverability to the robot manipulator. Also, high material damping is beneficial because it can dissipate the structural vibration induced in the robot manipulator structure. Both the high specific stiffness and damping of the material cannot be achieved through conventional materials such as steel and aluminum because they have almost the same low specific stiffness and low material damping. However, fiber reinforced polymeric composite materials that consist of high specific modulus fiber and high damping matrix have both high specific stiffness and high material damping.

In order to increase specific stiffness and damping, in this work, the third robot arm of the articulated robot manipulator that has 6 d.f. (degrees of freedom), 60 N payload and 0.1 mm positional accuracy of the end effector was designed and manufactured with carbon fiber epoxy composite material. The composite third robot arm was composed of the composite yoke, the composite cylindrical tubular structure and the aluminum flange.

After manufacturing the composite arm, the dynamic property and operational performance were compared to those of the hybrid third robot arm that was composed of the aluminum yoke, the composite tubular structure and the aluminum flange.

From the experiments, it was found that the composite third robot arm contributed to improving both the dynamic characteristics and operational performance of the articulated robot.  相似文献   


5.
张超  张军 《振动与冲击》2020,39(12):265-271
铝蜂窝夹芯复合结构在航空工业、高速列车及汽车车体中得到越来越多的应用,其隔声性能对车内及机舱噪声有重要影响。建立了碳纤维铝蜂窝夹芯复合结构有限单元模型,用有限单元法计算了结构在声载荷激励下的响应,并计算分析了复合结构的隔声性能,分析了碳纤维复合面板厚度、面板层数、铺设角度、铝蜂窝芯层的厚度、铝蜂窝壁厚对隔声性能的影响。研究结果表明,面板采用碳纤维复合结构时,在小于1 000 Hz的低频段,相同面板厚度的铝蜂窝复合结构隔声性能比全铝合金材料的铝蜂窝夹芯复合结构有所降低,而且在高频段会出现隔声量更低的隔声低谷;相较于铝合金面板,复合结构的面板采用碳纤维复合材料时,能够实现整体结构轻量化也提高复合结构的隔声性能;各层之间按相对90°铺设时复合结构隔声性能最好;随着面板厚度的增加复合结构隔声性能增加,面板层总厚度不变的情况下,单层面板或者过多的层数都会使复合结构隔声性能降低。  相似文献   

6.
The material for the robot structure should have high specific stiffness (stiffness/density) to give positional accuracy and fast maneuverability to the robot. Also, the high material damping is beneficial because it can dissipate the structural vibration induced in the robot structure. This cannot be achieved through conventional materials such as steel and aluminum because these two materials have almost the same specific stiffnesses which are not high enough for the robot structure. Moreover, steel and aluminum have low material dampings.

Composites which usually consist of very high specific modulus fibers and high damping matrices have both high specific stiffnesses and high material dampings. Therefore, in this work, the forearm of an anthropomorphic robot which has 6 degrees of freedom, 70 N payload and 0·1 mm positional accuracy of the end effector was designed and manufactured with high modulus carbon fiber epoxy composite because the magnitudes of the mass and moment of inertia of the forearm of an anthropomorphic robot are most important due to its farthest position from the robot base.

Two power transmission shafts which deliver the power of the motors positioned at the rear of the robot forearm to the wrist and the end effector were also designed and manufactured with high modulus carbon fiber epoxy composite to reduce weight and rotational inertia. The mass reduction of the manufactured composite forearm was 15·9 kg less than the steel forearm.

The natural frequencies and damping capacity of the manufactured composite arm were measured by the fast Fourier transform method and compared to those for the steel arm. From the test, it was found that both the fundamental natural frequency and damping ratio of the composite arm of the robot were much higher than those of the steel arm.  相似文献   


7.
以泡沫铝为夹芯材料,玄武岩纤维(BF)和超高分子量聚乙烯纤维(UHMWPE)复合材料为面板,制备夹层结构复合材料。研究纤维类型、铺层结构和芯材厚度对泡沫铝夹层结构复合材料冲击性能和损伤模式的影响规律,并与铝蜂窝夹层结构复合材料性能进行对比分析。结果表明:BF/泡沫铝夹层结构比UHMWPE/泡沫铝夹层结构具有更大的冲击破坏载荷,但冲击位移和吸收能量较小。BF和UHMWPE两种纤维的分层混杂设计比叠加混杂具有更高的冲击破坏载荷和吸收能量。随着泡沫铝厚度的增加,夹层结构复合材料的冲击破坏载荷降低,破坏吸收能量增大。泡沫铝夹层结构比铝蜂窝夹层结构具有更高的冲击破坏载荷,但冲击破坏吸收能量较小;泡沫铝芯材以冲击部位的碎裂为主要失效形式,铝蜂窝芯材整体压缩破坏明显。  相似文献   

8.
开展明胶鸟弹撞击复合材料蜂窝夹芯板试验,研究夹芯结构在软体高速冲击下的损伤形式,分析相关因素对结构动态响应结果的影响。通过CT扫描对复合材料蜂窝夹芯板内部进行检测可知,面板出现分层、基体开裂、纤维断裂、凹陷、向胞内屈曲等损伤形式,蜂窝芯出现芯材压溃、与面板脱粘的损伤形式;分析复合材料蜂窝夹芯板后面板的动态变形过程及撞击中心处位移-时间数据可知,复合材料蜂窝夹芯板在撞击过程中出现由全局弯曲变形主导和局部变形主导的两种变形模式;通过对比不同工况下的复合材料蜂窝夹芯板损伤程度可知,复合材料蜂窝夹芯板损伤程度随鸟弹撞击速度的增加而增大;蜂窝芯高度为10 mm的复合材料蜂窝夹芯板较蜂窝芯高度为5 mm的复合材料蜂窝夹芯板的损伤程度大;初始动能较大的球形鸟弹较圆柱形鸟弹对复合材料蜂窝夹芯板造成的冲击损伤程度更大。   相似文献   

9.
The application of biofiber based paper-reinforced polymer (PRP) composites as skin materials for light-weight sandwich panel constructions was explored. Various sandwich panels with PRP composite skins and a commercial resin-impregnated aramid paper honeycomb core of different cell sizes and core heights were fabricated in the laboratory. The effects of honeycomb core height and cell size on the flexural properties of the lab-made sandwich panels were evaluated. The flexural moduli and strengths of the lab-made panels were compared to the reported values for three existing commercial products used for automotive load floor applications. The lab-made PRP composite/honeycomb core sandwich panels had comparable bending rigidity and flexural load bearing capability but lower areal weights when compared to the commercial products suggesting that PRP composites have the potential to be used as an alternative to glass fiber-reinforced polymer composites as skin materials in sandwich panel fabrication.  相似文献   

10.
The objective of this investigation is to study the complex vibration characteristics of an actual spacecraft structure using the FEA code in conjunction with experimental data. The body of a satellite consists of a monocoque structure formed by joining several composite sandwich panels composed of an aluminum honeycomb core with carbon fiber reinforced laminate skins on both sides.  相似文献   

11.
High Velocity Impact Response of Composite Lattice Core Sandwich Structures   总被引:1,自引:0,他引:1  
In this research, carbon fiber reinforced polymer (CFRP) composite sandwich structures with pyramidal lattice core subjected to high velocity impact ranging from 180 to 2,000 m/s have been investigated by experimental and numerical methods. Experiments using a two-stage light gas gun are conducted to investigate the impact process and to validate the finite element (FE) model. The energy absorption efficiency (EAE) in carbon fiber composite sandwich panels is compared with that of 304 stainless-steel and aluminum alloy lattice core sandwich structures. In a specific impact energy range, energy absorption efficiency in carbon fiber composite sandwich panels is higher than that of 304 stainless-steel sandwich panels and aluminum alloy sandwich panels owing to the big density of metal materials. Therefore, in addition to the multi-functional applications, carbon fiber composite sandwich panels have a potential advantage to substitute the metal sandwich panels as high velocity impact resistance structures under a specific impact energy range.  相似文献   

12.
针对碳纤维增强树脂复合材料(CFRP)蒙皮-铝蜂窝夹层结构,使用半球头式落锤冲击试验平台进行了低速冲击载荷下蜂窝芯单元尺寸对夹层板冲击性能影响的试验探究,并基于渐进损伤模型、内聚力模型和三维Hashin失效准则,在有限元仿真软件ABAQUS中建立了含蒙皮、蜂窝芯、胶层的CFRP蒙皮-铝蜂窝夹层板精细化低速冲击仿真模型,仿真结果与试验结果吻合较好。利用该数值模型进一步探究了蜂窝芯高度、蒙皮厚度和蜂窝芯壁厚等结构参数对于蜂窝夹层板低速冲击吸能效果的影响。结果表明:增大铝蜂窝芯的单元边长,会减小蜂窝夹层板的刚度,提升夹层板的吸能效果;芯层高度对夹层板的刚度及抗低速冲击性能影响较小;增大蜂窝夹层板的蒙皮厚度,可以提高夹层板的刚度,但会降低夹层板的吸能效果;增大蜂窝芯的壁厚,可以提高夹层板的刚度和抗低速冲击性能。   相似文献   

13.
The repeated low-velocity impact responses of hybrid plain-woven composite panels were studied by drop-weight experiments. Non-hybrid S2-glass-fiber/toughened epoxy and IM7 graphite fiber/toughened epoxy as well as hybrid S2-glass–IM7 graphite fiber/toughened epoxy composite panels were impacted repeatedly using a pressure-assisted Instron-Dynatup 8520 instrumented drop-weight impact tester. During the low-velocity impact tests, the time histories of impact forces, absorbed impact energies and panel central deflections were recorded. The relations between the impact force and central deflection, whose slope represented the dynamic contact stiffness, were then constructed. The damaged specimens were inspected visually and using the ultrasonic C-Scan method. The effects of hybridization and lay-up sequence on the repeated drop-weight impact responses of woven composites were investigated. It was observed that damage accumulations could be slowed down using hybridization. It was also witnessed that the lay-up configuration of a hybrid composite had a significant influence on damage accumulation rate. The hybrid specimens with glass–epoxy skins survived the double number of successive impacts compared to hybrid specimens with graphite–epoxy skins.  相似文献   

14.
N.O. Cabrera  B. Alcock  T. Peijs   《Composites Part B》2008,39(7-8):1183-1195
This paper describes the creation of polypropylene sandwich panels, based on all-polypropylene (all-PP) composite laminates combined with a polypropylene based honeycomb or foam core. These all-PP composite laminates are based on high modulus polypropylene tape reinforcing a polypropylene matrix. Sandwich panels containing these all-PP composite laminate faces are compared with sandwich panels containing conventional glass fibre reinforced polypropylene laminate faces, and the mechanical properties, failure modes, and design requirements of these different materials are discussed.  相似文献   

15.
A deflection-controlled flexural fatigue study of unidirectional glass fiber reinforced epoxy and vinyl ester composites was undertaken. Damage initiation and growth for various deflection levels were evaluated. Also, quantitative assessment of damage was made by monitoring stiffness loss in the composites as a function of fatigue cycles. Results show that the glass/epoxy composite has better performance compared with the glass/vinyl ester composite, especially at low deflection amplitudes. Fatigue behavior of the composites at low deflection amplitudes is found to be primarily influenced by matric and fiber-matrix interfacial damage in the form of longitudinal splitting.  相似文献   

16.
Blast impact response of aluminum foam sandwich composites   总被引:1,自引:0,他引:1  
Military and civilian structures can be exposed to intentional or accidental blasts. Aluminum foam sandwich structures are being considered for energy absorption applications in blast resistant cargo containers, ordnance boxes, transformer box pads, etc. This study examines the modeling of aluminum foam sandwich composites subjected to blast loads using LS-DYNA software. The sandwich composite was designed using laminated face sheets (S2 glass/epoxy and aluminum foam core. The aluminum foam core was modeled using an anisotropic material model. The laminated face sheets were modeled using material models that implement the Tsai-Wu and Hashin failure theories. Ablast load was applied using the CONWEP blast equations (*LOAD_BLAST) in LS-DYNA. This paper discusses the blast response of constituent S2-glass/epoxy face sheets, the closed cell aluminum foam core as well as the sandwich composite plate.  相似文献   

17.
《Composites Part A》1999,30(6):767-779
This paper deals with the analysis of the mechanical properties of the core materials for sandwich panels. In this work, the core is firstly a honeycomb and secondly tubular structure. This kind of core materials are extensively used, notably in automotive construction (structural components, load floors...). For this study, three approaches are developed: a finite element analysis, an analytical study and experimental tests. Structural members made up of two stiffs, strong skins separated by a lightweight core (foam, honeycomb, tube...) are known as sandwich panels. The separation of the skins by the core increases the inertia of the sandwich panel, the flexure and shear stiffness. This increase is obtained with a little increase in weight, producing an efficient structure to resist bending and buckling loads. A new analytical method to analyse sandwich panels core will be presented. These approaches (theoretical and experimental) are used to determine elastic properties and ultimate stress. A parameter study is carried out to determine elastic properties as a function of geometrical and mechanical characteristics of basic material. Both theoretical and experimental results are discussed and a good correlation between them is obtained.  相似文献   

18.
介绍了碳纤维/铝蜂窝夹芯结构的Kevlar短纤维界面增韧方法。通过三点弯曲实验和面内压缩实验,对比增韧试件与未增韧试件的载荷位移曲线、破坏模式等特征,发现未增韧试件往往先发生界面分层破坏,继而面板和芯体分别发生局部破坏;而增韧试件通常发生整体破坏。实验数据显示,Kevlar短纤维界面增韧可以使碳纤维/铝蜂窝夹芯板的抗弯强度、压缩强度、能量吸收等力学性能分别至少提高14.06%、55.80%和61.53%。对破坏后界面的SEM观测发现:增韧试件并未发生界面脱粘,而是由于芯体撕裂造成面/芯剥离,揭示了Kevlar短纤维的界面增韧机制。对具有Kevlar短纤维界面增韧的碳纤维/铝蜂窝夹芯结构进行有限元建模,并分别对其在三点弯曲和面内压缩载荷下的力学行为进行数值分析,以指导该类夹芯结构的分析与设计。  相似文献   

19.
Combined inplane compressive and shear buckling analysis was conducted on flat rectangular sandwich panels using the Rayleigh-Ritz minium energy method with a consideration of transverse shear effect of the sandwich core. The sandwich panels were fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that slightly slender (along the unidirectional compressive loading axis) rectangular sandwich panels have the most desirable stiffness-to-weight ratios for aerospace structural applications; the degradation of buckling strength sandwich panels with rising temperature is faster in shear than in compression; and the fiber orientation of the face sheets for optimum combined-load buckling strength of sandwich panels is a strong function of both loading condition and panel aspect ratio. Under the same specific weight and panel aspect ratio, a sandwich panel with metal matrix composite face sheets has a much higher buckling strength than one having monolithic face sheets.  相似文献   

20.
为满足亚毫米波、太赫兹波段等高频天线反射面的应用需求,采用附加树脂修型技术制得1米级、面形精度优于10 μm均方差(RMS)的碳纤维增强树脂(CFRP)复合材料天线面板。主要开展了针对高精度CFRP复合材料面板在极端低温环境下的热变形机制研究。根据基础材料性能测试数据,建立面板的有限元仿真模型,预测大温差工况下多结构参数面板的热变形残差,分析了影响面板热变形特性的主要因素。比较了铝蜂窝和碳管阵列夹芯两种面板结构热变形特性的差异。结果表明,碳管夹芯结构面板具备更高的比刚度和热稳定性。通过仿真结构优化给出了面板的结构设计参数,并重新试制了原型面板。采用基于高精度数字摄影测量的实验方法,对铝蜂窝和碳管阵列两种夹芯结构原型面板在低温环境下的热变形误差进行了测量,通过分析实验与仿真结果的误差来源,讨论了有限元预测方法的可行性,给出了针对高精度CFRP复合材料面板设计及工艺方法的指导意见。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号