首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 746 毫秒
1.
This paper develops an improved analysis of ATM switching architectures adopting a replicated banyan interconnection network provided with dedicated input and output queues, one per switch inlet and outlet. Two different plane selection policies are studied, random choice and alternate sharing, and two different operation modes are considered for the interaction between input and output queues, backpressure and output queue loss. These different internal operations are ranked in terms of traffic performance and the problem of optimal allocation of a given buffer budget between input and output queues is addressed. The analysis, which assumes that the network is loaded by uniform traffic, always provides conservative results whereas known models are less accurate and give optimistic traffic results. Packet delay and loss probability performance is evaluated for the ATM switch and its accuracy is assessed using computer simulation also in comparison with results given by previous models.  相似文献   

2.
An analytical model for the performance analysis of a multiple input queued asynchronous transfer mode (ATM) switch is presented. The interconnection network of the ATM switch is internally nonblocking and each input port maintains a separate queue of cells for each output port. The switch uses parallel iterative matching (PIM) to find the maximal matching between the input and output ports of the switch. A closed-form solution for the maximum throughput of the switch under saturated conditions is derived. It is found that the maximum throughput of the switch exceeds 99% with just four iterations of the PIM algorithm. Using the tagged input queue approach, an analytical model for evaluating the switch performance under an independent identically distributed Bernoulli traffic with the cell destinations uniformly distributed over all output ports is developed. The switch throughput, mean cell delay, and cell loss probability are computed from the analytical model. The accuracy of the analytical model is verified using simulation  相似文献   

3.
The performance analysis of an input access scheme in a high-speed packet switch for broadband ISDN is presented. In this switch, each input port maintains a separate queue for each of the outputs, thus n 2 input queues in an (n×n) switch. Using synchronous operation, at most one packet per input and output will be transferred in any slot. We derive lower and upper bounds for the throughput which show close to optimal performance. The bounds are very tight and approach to unity for switch sizes on the order of a hundred under any traffic load, which is a significant result by itself. Then the mean packet delay is derived and its variance is bounded. A neural network implementation of this input access scheme is given. The energy function of the network, its optimized parameters and the connection matrix are determined. Simulation results of the neural network fall between the theoretical throughput bounds  相似文献   

4.
The multiple input-queued (MIQ) asynchronous transfer mode (ATM) switch has drawn much interest as a promising candidate for a high-speed and high-performance packet switch. The most conspicuous feature of the switch is that each input port is equipped with m(1⩽m⩽N) distinct queues, each for a group of output ports. Since the MIQ switch has multiple queues, an input can serve up to m cells in a time slot, leading to an enhanced performance. We derive the average queue length, mean cell delay, and cell loss probability for the MIQ switch in terms of the number of queues in an input port (m) and input load. The results include a special case of the single input-queued (SIQ) switch (m=1), which is analyzed by Hui et al. (1987)  相似文献   

5.
The nonuniform traffic performance on a nonblocking space division packet switch is studied. When an output link is simultaneously contended by multiple input packets, only one can succeed, and the rest will be buffered in the queues associated with each input link. given the condition that the traffic on each output is not dominated by individual inputs, this study indicates that the output contention involved by packets at the head of input queues can be viewed as an independent phase-type process for a sufficiently large size of the switch. Therefore, each input queue can be modeled by an independent Geom/PH/1 queueing process. Once the relative input traffic intensities and their output address assignment functions are defined, a general formulation can be developed for the maximum throughput of the switch in saturation. The result indicates under what condition the input queue will saturate. A general solution technique for the evaluation of the queue length distribution is proposed. The numerical study based on this analysis agrees well with simulation results  相似文献   

6.
Shuffleout is a blocking multistage asynchronous transfer mode (ATM) switch using shortest path routing with deflection, in which output queues are connected to all the stages. This paper describes a model for the performance evaluation of the shuffleout switch under arbitrary nonuniform traffic patterns. The analytical model that has been developed computes the load distribution on each interstage link by properly taking into account the switch inlet on which the packet has been received and the switch outlet the packet is addressing. Such a model allows the computation not only of the average load per stage but also its distribution over the different links belonging to the interstage pattern for each switch input/output pair. Different classes of nonuniform traffic patterns have been identified and for each of them the traffic performance of the switch is evaluated by thus emphasizing the evaluation of the network unfairness  相似文献   

7.
In this paper, we study the performance of an input and output queueing switch with a window scheme and a speed constraint. The performance of a non-blocking ATM switch can usually be improved by increasing the switching speed. Also, the performance of a switch can be improved using a window scheme by relaxing the first-in-firstout (FIFO) queueing discipline in the input queue. Thus, one can expect that a combined scheme of windowing and a speed constraint can improve further the performance of the packet switch. Here, we analyze the maximum throughput of the input and output queueing switch with a speed constraint combined with windowing, and show that it is possible to obtain high throughput with a small increment of speed-up and window size. For analysis, we model the HOL queueing system as a virtual queueing system. By analyzing the dynamics of HOL packets in this virtual queueing model, we obtain the service probability of the HOL server as a function of output contention capabilities. Using the result, we apply the flow conservation relation to this model and obtain the maximum throughput. The analytical results are verified by simulation.  相似文献   

8.
The Tera ATM LAN project at Carnegie Mellon University addresses the interconnection of hundreds of workstations in the Electrical and Computer Engineering Department via an ATM-based network. The Tera network architecture consists of switched Ethernet clusters that are interconnected using an ATM network. This paper presents the Tera network architecture, including an Ethernet/ATM network interface, the Tera ATM switch, and its performance analysis. The Tera switch architecture for asynchronous transfer mode (ATM) local area networks (LAN's) incorporates a scalable nonblocking switching element with hybrid queueing discipline. The hybrid queueing strategy includes a global first-in first-out (FIFO) queue that is shared by all switch inputs and dedicated output queues with small speedup. Due to hybrid queueing, switch performance is comparable to output queueing switches. The shared input queue design is scalable since it is based on a Banyan network and N FIFO memories. The Tera switch incorporates an optimal throughput multicast stage that is also based on a Banyan network. Switch performance is evaluated using queueing analysis and simulation under various traffic patterns  相似文献   

9.
A new class of switching architectures for broadband packet networks, called shuffleout, is described and analyzed in the paper. Shuffleout is basically an output-queued architecture with a multistage interconnection network built out of unbuffered b×2b switching elements. Its structure is such that the number of cells that can be concurrently switched from the inlets to each output queue equals the number of stages in the interconnection network. The switching element operates the cell self-routing adopting a shortest path algorithm which, in case of conflict for interstage links, is coupled with deflection routing. The paper presents the basic shuffleout architecture, called open-loop shuffleout, in which the cells that cross the whole interconnection network without entering the addressed output queues are lost. The key target of the proposed architecture is coupling the implementation feasibility of a self-routing switch with the desirable traffic performance typical of output queueing  相似文献   

10.
Consider a single packet switch with a finite number of packet buffers shared between several output queues. An arriving packet is lost if no free buffer is available, as in the CIGALE network. It has been observed by simulation that if load increases too much, congestion may occur, i.e., throughput declines; it appears that the busiest link's queue tends to hog the buffers. Therefore, we will limit the queue length and when the queue is full the packet will be dropped. We expect that this restricted buffer sharing policy will avoid congestion under conditions of heavy load. A queueing model of a packet switch is defined and solved by local balance. Loss probability is evaluated, and values of queue limit to minimize loss are found; they depend on load. A Square-Root rule is introduced to make the choice of queue limit independent of load. For a sample switch, with three output links, a comparison is made between performance under different buffer sharing policies; it is shown that restricted sharing prevents congestion by making throughput an increasing function of load.  相似文献   

11.
Presents a new scheduler, the two-dimensional round-robin (2DRR) scheduler, that provides high throughput and fair access in a packet switch that uses multiple input queues. We consider an architecture in which each input port maintains a separate queue for each output. In an N×N switch, our scheduler determines which of the queues in the total of N2 input queues are served during each time slot. We demonstrate the fairness properties of the 2DRR scheduler and compare its performance with that of the input and output queueing configurations, showing that our scheme achieves the same saturation throughput as output queueing. The 2DRR scheduler can be implemented using simple logic components, thereby allowing a very high-speed implementation  相似文献   

12.
Shared buffer switches consist of a memory pool completely shared among output ports of a switch. Shared buffer switches achieve low packet loss performance as buffer space is allocated in a flexible manner. However, this type of buffered switches suffers from high packet losses when the input traffic is imbalanced and bursty. Heavily loaded output ports dominate the usage of shared memory and lightly loaded ports cannot have access to these buffers. To regulate the lengths of very active queues and avoid performance degradations, threshold‐based dynamic buffer management policy, decay function threshold, is proposed in this paper. Decay function threshold is a per‐queue threshold scheme that uses a tailored threshold for each output port queue. This scheme suggests that buffer space occupied by an output port decays as the queue size of this port increases and/or empty buffer space decreases. Results have shown that decay function threshold policy is as good as well‐known dynamic thresholds scheme, and more robust when multicast traffic is used. The main advantage of using this policy is that besides best‐effort traffic it provides support to quality of service (QoS) traffic by using an integrated buffer management and scheduling framework. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
A single-stage non-blocking N × N packet switch is considered. Data units may be stored before switching at the inputs as well as after switching at the outputs. Some output buffering capacity is intended to achieve high throughput, whereas an additional input buffering capacity keeps losses due to input-buffer overflow reasonably low. The paper studies the impact on performance of the head of the line arbitration policy, i.e. the sequence which is used to transfer data units from the heads of input queues to each output queue. The investigation is based on two performance measures: the average delay and the maximum throughput of the switch. Closed-form expressions for the FCFS, LCFS and the ROS policies are obtained. The result of the average delay with the FCFS policy leads to a lower bound, and that with the LCFS policy to an upper bound for the average delay, corresponding to an arbitrary symmetric policy which does not use information related to the state of the input queues. It is shown that the maximum throughput does not depend on the head of the line arbitration policy. It depends only on the output-buffer size and the packet-size distribution. The cases of fixed and exponentially distributed packet sizes are studied. The effects of asymmetric policies which result in different behaviours of some of the input queues is also considered.  相似文献   

14.
A single-stage nonblocking N*N packet switch with both output and input queuing is considered. The limited queuing at the output ports resolves output port contention partially. Overflow at the output queues is prevented by a backpressure mechanism and additional queuing at the input ports. The impact of the backpressure effect on the switch performance for arbitrary output buffer sizes and for N to infinity is studied. Two different switch models are considered: an asynchronous model with Poisson arrivals and a synchronous model with Bernoulli arrivals. The investigation is based on the average delay and the maximum throughput of the switch. Closed-form expressions for these performance measures are derived for operation with fixed size packets. The results demonstrate that a modest amount of output queuing, in conjunction with appropriate switch speedup, provides significant delay and throughput improvements over pure input queuing. The maximum throughput is the same for the synchronous and the asynchronous switch model, although the delay is different.<>  相似文献   

15.
In this paper, we propose an input access scheme for input-queued ATM multicast switches, achieving high system throughput, low packet delay and packet loss probability. Multicast and unicast packets of each input port are separately queued. Multicast queues take priority over the unicast queues, and both types of queues are fairly served in a cyclic-priority access discipline. In particular, each unicast queue is handled on a window-service basis, and each multicast packet is switched in a one-shot scheduling manner. To evaluate the performance of the access scheme, we propose an approximate analysis based on a simplified cyclic-priority model for anN×N finite-buffer multicast switch possessing Bernoulli multicast and unicast arrivals, with window-service (for unicasting) and one-shot scheduling (for multicasting) both taken into account. Finally, we show simulation results to demonstrate the accuracy of the approximate analysis and the superiority of the scheme over existing schemes with respect to normalized system throughput, mean packet delay, and packet loss probability.An earlier version of this paper appeared in IEEE ICC'96.  相似文献   

16.
The asynchronous transfer mode (ATM) is the choice of transport mode for broadband integrated service digital networks (B-ISDNs). We propose a window-based contention resolution algorithm to achieve higher throughput for nonblocking switches in ATM environments. In a nonblocking switch with input queues, significant loss of throughput can occur due to head-of-line (HOL) blocking when first-in first-out (FIFO) queueing is employed. To resolve this problem, we employ bypass queueing and present a cell scheduling algorithm which maximizes the switch throughput. We also employ a queue length based priority scheme to reduce the cell delay variations and cell loss probabilities. With the employed priority scheme, the variance of cell delay is also significantly reduced under nonuniform traffic, resulting in lower cell loss rates (CLRs) at a given buffer size. As the cell scheduling controller, we propose a neural network (NN) model which uses a high degree of parallelism. Due to higher switch throughput achieved with our cell scheduling, the cell loss probabilities and the buffer sizes necessary to guarantee a given CLR become smaller than those of other approaches based on sequential input window scheduling or output queueing  相似文献   

17.
ATM (asynchronous transfer mode) is a new technique for transmitting voice, data and video. The performance of atm networks will depend on switch structure. Performance analysis of an atm switch based on a three-stage Clos network is presented. In this paper two types of switches are studied: a switch with input queues in the switching elements and a switch with output queues. This study is at the cell level and intends to dimension the switch. First, the traffic is supposed to be uniform, cells arrive on each input according to a geometric arrival process, they are uniformly directed over all the network outputs. An analytic model is proposed for both input and output queues in the switching elements. A study of the saturation throughput is proposed for input buffer switching elements. This work proves the influence of buffer dimensioning on the different stages of the switch. Dissymmetric switching elements are shown to be better than symmetric ones. A model is then designed for nonuniform traffic patterns and output buffers. Two types of non-uniform traffic are presented: single source to single destination (sssd) and multi-hot spots traffic (mhs). Discrete event simulations are used to validate the different models.  相似文献   

18.
Switches with a shared buffer have lower packet loss probabilities than other types of switches when the sizes of the buffers are the same. In the past, the performance of shared buffer switches has been studied extensively. However, due to the strong dependencies of the output queues in the buffer, it is very difficult to find a good analytical model. Existing models are either accurate but have exponential complexities or not very accurate. In this paper, we propose a novel analytical model called the Aggregation model for switches with shared buffer. The model is based on the idea of induction: first find the behavior of two queues, then aggregate them into one block; then find the behavior of three queues while regarding two of the queues as one block, then aggregate the three queues into one block; then aggregate four queues, and so on. When all queues have been aggregated, the behavior of the entire switch will be found. This model has perfect accuracies under all tested conditions and has polynomial complexity.  相似文献   

19.
Two simple models of queueing on anN times Nspace-division packet switch are examined. The switch operates synchronously with fixed-length packets; during each time slot, packets may arrive on any inputs addressed to any outputs. Because packet arrivals to the switch are unscheduled, more than one packet may arrive for the same output during the same time slot, making queueing unavoidable. Mean queue lengths are always greater for queueing on inputs than for queueing on outputs, and the output queues saturate only as the utilization approaches unity. Input queues, on the other hand, saturate at a utilization that depends onN, but is approximately(2 -sqrt{2}) = 0.586whenNis large. If output trunk utilization is the primary consideration, it is possible to slightly increase utilization of the output trunks-upto(1 - e^{-1}) = 0.632asN rightarrow infty-by dropping interfering packets at the end of each time slot, rather than storing them in the input queues. This improvement is possible, however, only when the utilization of the input trunks exceeds a second critical threshold-approximatelyln (1 +sqrt{2}) = 0.881for largeN.  相似文献   

20.
This paper analyzes the packet loss and delay performance of an arrayed-waveguide-grating-based (AWG) optical packet switch developed within the EPSRC-funded project WASPNET (wavelength switched packet network). Two node designs are proposed based on feedback and feed-forward strategies, using sharing among multiple wavelengths to assist in contention resolution. The feedback configuration allows packet priority routing at the expense of using a larger AWG. An analytical framework has been established to compute the packet loss probability and delay under Bernoulli traffic, justified by simulation. A packet loss probability of less than 10-9 was obtained with a buffer depth per wavelength of 10 for a switch size of 16 inputs-outputs, four wavelengths per input at a uniform Bernoulli traffic load of 0.8 per wavelength. The mean delay is less than 0.5 timeslots at the same buffer depth per wavelength  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号