首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper deals with the state feedback controller design for a class of high‐order feedforward (upper‐triangular) nonlinear systems with delayed inputs. The uncertainties in the systems are assumed to be dominated by higher‐order nonlinearities multiplying by a constant growth rate. The designed controller, which is a continuous but not smooth feedback, could achieve global asymptotical stability. Based on the appropriate state transformation of time‐delay systems, the problem of controller design can be converted into the problem of finding a parameter, which can be obtained by appraising the nonlinear terms of the systems. The nonlinear systems considered here are more general than conventional feedforward systems and they could be viewed as generalized feedforward systems. Two examples are given to show the effectiveness of the proposed design procedure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
We propose a novel and simple design scheme of output feedback controller for a class of nonlinear systems with delayed output. The nonlinear systems considered here are more general than feedforward systems (upper triangular systems). By constructing an appropriate Lyapunov–Krasovskii functional (LKF) and solving linear matrix inequalities (LMIs), the delay-dependent controller making the closed-loop system globally asymptotically stable (GAS) is explicitly constructed. A simulation example is given to demonstrate the effectiveness of the proposed design procedure.  相似文献   

3.
ABSTRACT

This paper investigates the problem of global regulation via output feedback for a class of triangular structural nonlinear systems with unknown measurement sensitivity. Two kinds of triangular structure nonlinear systems, namely upper triangular systems and lower triangular systems, are considered here, and the key features of our considered systems are that there are uncertain linear growth condition in the nonlinear terms. Firstly, for a class of upper triangular nonlinear systems with unknown measurement sensitivity, an output feedback controller is designed such that global regulation of the system is achieved. Then, for a class of lower triangular nonlinear systems with unknown measurement sensitivity, global regulation is realised in a unifying framework. Finally, two simulation examples are respectively given to demonstrate the effectiveness of the theoretical results.  相似文献   

4.
In this paper, the global sampled‐data output‐feedback stabilization problem is considered for a class of stochastic nonlinear systems. First, based on output‐feedback domination technique and emulation approach, a systematic design procedure for sampled‐data output‐feedback controller is proposed for a class of stochastic lower‐triangular nonlinear systems. It is proved that the proposed sampled‐data output‐feedback controller will stabilize the given stochastic nonlinear system in the sense of mean square exponential stability. Because of the domination nature of the proposed control approach, it is shown that the proposed control approach can also be used to handle the global sampled‐data output‐feedback stabilization problems for a more general class of stochastic non‐triangular nonlinear systems. Finally, simulation examples are given to demonstrate the effectiveness of the proposed method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
This article presents a method to design a robust controller for a class of nonlinear mechanical systems. The parameters of the system are assumed uncertain in the sense that they are known only within intervals of known lower and upper limits. The method involves using Kharitonov stability theory of interval polynomials to design a robust stabilising controller for the considered class of systems. To formulate the interval parameter problem in joint space, the dynamic equation, which is derived in Cartesian space for parallel kinematic machines, is transformed to joint space using the Jacobian matrix and its time derivative. The nonlinear joint space model is linearised yielding an interval linear model and a robust controller with interval parameter gains is then found. A simulation study on a dynamic model of Stewart platform based parallel kinematics machine demonstrates the design procedure and shows its effectiveness.  相似文献   

6.
In this paper, the problem of global state regulation by output feedback is investigated for a class of uncertain nonlinear systems satisfying some relaxed upper‐triangular‐type condition. Using a linear dynamic gain observer with two dynamic gains and introducing two appropriate change of coordinates, we give a constructive design procedure for the linear‐like output feedback stabilizing controller. It is proved that the proposed controller globally regulates all the states of the uncertain system and maintains global boundedness of the closed‐loop system. An example is provided to demonstrate the effectiveness of the proposed design scheme. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
This paper is concerned with the stabilization problem for a class of large-scale nonlinear time-delay systems in lower triangular form. The uncertain nonlinearities are assumed to be bounded by continuous functions of the outputs or delayed outputs multiplied by unmeasured states or delayed states. An observer based output feedback control scheme is proposed using the dynamic gain control design approach. Based on Lyapunov stability theory, global asymptotic stability of the closed-loop control system is proved. Contrary to many existing control designs for lower triangular nonlinear systems, the celebrated backstepping method is not utilized here. An example is finally given to demonstrate the effectiveness of the proposed design procedure.  相似文献   

8.
In this study, we present an extension of the prediction scheme (dynamic control) for nonlinear stochastic systems with both input and state delays. The stochastic system includes multiplicative noise and it is modelled as Ito stochastic differential equation. Input delay is considered to be equal or less than state delay and both delays are considered to be constant. At first, a new formula for prediction of the system's state is presented and then by means of this prediction vector, control input is constructed. To calculate the stabilising gain of the predictive controller, some sufficient delay-independent conditions in the form of linear matrix inequality are presented. Finally, simulation examples are given to illustrate the effectiveness of the proposed approach.  相似文献   

9.
彭丹  华长春 《控制与决策》2012,27(1):124-128
考虑一类由局部状态空间Fornasini-Marchesini(FM LSS)第二模型描述的,具有时变状态滞后非线性二维(2-D)离散系统的稳定性分析和控制问题.时变状态滞后项的上、下界为正整数,非线性项满足Lipschitz条件.首先,通过引入一个含有时滞上、下界的新Lyapunov函数,给出了系统的稳定性准则;然后设计了状态反馈控制器以保证系统的稳定性,进而,状态反馈控制律可由线性矩阵不等式求得;最后通过数值算例表明了所得结果的有效性.  相似文献   

10.
Optimal control of nonlinear systems: a predictive control approach   总被引:2,自引:0,他引:2  
A new nonlinear predictive control law for a class of multivariable nonlinear systems is presented in this paper. It is shown that the closed-loop dynamics under this nonlinear predictive controller explicitly depend on design parameters (prediction time and control order). The main features of this result are that an explicitly analytical form of the optimal predictive controller is given, on-line optimisation is not required, stability of the closed-loop system is guaranteed, the whole design procedure is transparent to designers and the resultant controller is easy to implement. By establishing the relationship between the design parameters and time-domain transient, it is shown that the design of an optimal generalised predictive controller to achieve desired time-domain specifications for nonlinear systems can be performed by looking up tables. The design procedure is illustrated by designing an autopilot for a missile.  相似文献   

11.
The article considers stability and robust ? controller design of discrete-time systems with random communication delays and state quantization. A finite state Markov process is used to model communication delays between sensors and controllers. Measurements are assumed to be quantized by a logarithmic quantizer, and the effect of quantization errors are incorporated into the controller design. Based on a Lyapunov–Krasovskii approach, novel methodologies for analysing stability and designing a time-delay mode-dependent quantized state feedback controller are proposed. The controller is obtained through solving bilinear matrix inequalities (BMIs) using the cone complementarity linearisation algorithm.  相似文献   

12.
Constructive control techniques have been proposed for controlling strict feedback (lower triangular form) stochastic nonlinear systems with a time‐varying time delay in the state. The uncertain nonlinearities are assumed to be bounded by polynomial functions of the outputs multiplied by unmeasured states or delayed states. The delay‐independent output feedback controller making the closed‐loop system globally asymptotically stable is explicitly constructed by using a linear dynamic high‐gain observer in combination with a linear dynamic high‐gain controller. A simulation example is given to demonstrate the effectiveness of the proposed design procedure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
This article is concerned with the global stabilization problem of a family of feedforward nonlinear time‐delay systems whose linearized system consists of multiple distinct oscillators. To fully utilize the delayed information and maintain the state decoupling property in the controller design, the considered nonlinear feedforward system is first transformed into a new system which contains time delays in both its input and states based on a novel model transformation containing time delays, and then the stabilizing saturated controller for the transformed system is designed based on the recursive design method. Meanwhile, explicit stability conditions are also provided. When the linearized system is a cascade of multiple oscillators and multiple integrators, a modified saturated feedback control utilizing not only the current state but also the delayed state is also established for the corresponding global stabilization problem. Two examples, including a practical one, are given to show the effectiveness and superiority of the proposed approaches.  相似文献   

14.
In this paper, we consider a control problem for a class of uncertain nonlinear systems in which there exists an unknown time-varying delay in the input and lower triangular nonlinearities. Usually, in the existing results, input delays have been coupled with feedforward (or upper triangular) nonlinearities; in other words, the combination of lower triangular nonlinearities and input delay has been rare. Motivated by the existing controller for input-delayed chain of integrators with nonlinearity, we show that the control of input-delayed nonlinear systems with two particular types of lower triangular nonlinearities can be done. As a control solution, we propose a newly designed feedback controller whose main features are its dynamic gain and non-predictor approach. Three examples are given for illustration.  相似文献   

15.
This paper is concerned with the problem of finite‐time stabilization for some nonlinear stochastic systems. Based on the stochastic Lyapunov theorem on finite‐time stability that has been established by the authors in the paper, it is proven that Euler‐type stochastic nonlinear systems can be finite‐time stabilized via a family of continuous feedback controllers. Using the technique of adding a power integrator, a continuous, global state feedback controller is constructed to stabilize in finite time a large class of two‐dimensional lower‐triangular stochastic nonlinear systems. Also, for a class of three‐dimensional lower‐triangular stochastic nonlinear systems, a recursive design scheme of finite‐time stabilization is given by developing the technique of adding a power integrator and constructing a continuous feedback controller. Finally, a simulation example is given to illustrate the theoretical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, by constructing appropriate Lyapunov–Krasovskii functionals (LKF) and applying the model transformation of time-delay systems, a design scheme of state feedback controller for a class of feedforward nonlinear systems with a delay in the input is proposed. The designed controllers have a very simple structure and do not involve any saturation or recursive computation, which is widely applied in designing a controller of feedforward nonlinear systems. Using the transformation of coordinates and the property of Hurwitz polynomial, the problem of designing controller can be converted into the problem of finding a parameter, which can be solved by solving the optimization problem with linear matrix inequalities (LMIs) constraints. A simulation example is given to show the effectiveness of the proposed design procedure.  相似文献   

17.
彭丹 《控制工程》2012,19(3):438-442
针对一类由局部状态空间(LSS)Fornasini-Marchesini(FM)第二模型描述的,具有时变状态滞后的2-D离散系统,其中时变滞后项的上、下界均为正实数,研究了其稳定性和控制综合问题。首先,利用Lyapunov-Krasovski泛函方法,提出了系统的稳定性准则。再根据这一准则,分别设计状态反馈和动态输出反馈控制器保证系统的稳定性。状态反馈控制律和输出反馈矩阵可由线性矩阵不等式(LMI)求得。最后,通过数值算例说明所得结果的有效性。  相似文献   

18.
This paper is concerned with the problem of global stabilization by state feedback and output feedback for a class of time-delay nonlinear systems that are dominated by a triangular system satisfying linear growth conditions. By solving the Lyapunov equation and constructing the appropriate Lyapunov-Krasovskii functionals (LKF), the linear and memoryless state feedback controller and output feedback controller making the closed-loop system globally asymptotically stable (GAS) are explicitly constructed respectively. Comparing our design scheme with the backstepping method which has been widely used to deal with strictly feedback nonlinear systems, our design scheme is much simpler and more efficient. An example is given to show that the proposed design procedures are very simple and efficient.  相似文献   

19.
This paper presents a decentralized robust controller design for a class of interconnected dynamic systems with control delays and parametric uncertainty. The parameter uncertainties are considered unknown but norm bounded. By applying the Lyapunov stability theorem, two new delay-dependent sufficient conditions are established in terms of linear matrix inequalities, and linear memoryless state feedback controllers are designed to maintain the robust stability for the class of systems under study. It is shown that either no tuning procedure is required or only one parameter from each inequality needs to be tuned. An example is presented to demonstrate the application of the results presented here.  相似文献   

20.
Using the Lyapunov function method, this paper investigates the design of state feedback stabilization controllers for fractional order nonlinear systems in triangular form, and presents a number of new results. First, some new properties of Caputo fractional derivative are presented, and a sufficient condition of asymptotical stability for fractional order nonlinear systems is obtained based on the new properties. Then, by introducing appropriate transformations of coordinates, the problem of controller design is converted into the problem of finding some parameters, which can be certainly obtained by solving the Lyapunov equation and relevant matrix inequalities. Finally, based on the Lyapunov function method, state feedback stabilization controllers making the closed-loop system asymptotically stable are explicitly constructed. A simulation example is given to demonstrate the effectiveness of the proposed design procedure.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号