首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
In this paper, we present a distributed model predictive control (MPC) algorithm for polytopic uncertain systems subject to actuator saturation. The global system is decomposed into several subsystems. A set invariance condition for polytopic uncertain system with input saturation is identified and a min–max distributed MPC strategy is proposed. The distributed MPC controller is designed by solving a linear matrix inequalities (LMIs) optimization problem. An iterative algorithm is developed for making coordination among subsystems. Case studies are carried out to illustrate the effectiveness of the proposed algorithm.  相似文献   

2.
In this paper, we study the distributed model predictive control (MPC) of polytopic uncertain systems with quantised communication and packet dropouts. The model of the whole plant is divided into a certain number of incomplete subsystems. Due to the nature of the distributed control structure, there is generally a lack of information about the state of the overall system. Each subsystem shares its information with neighbour subsystems via reliable connection. Distributed MPC controllers are designed for each subsystem by solving the linear matrix inequalities optimisation problem. The distributed state feedback laws are quantised and transmitted via communication network. An iterative algorithm is presented to make coordination among distributed state feedback laws. The communication is assumed to be affected by random packet dropouts in a representation of Bernoulli distributed white sequences with known conditional probabilities. A case study is carried out to demonstrate the effectiveness of the proposed distributed MPC technique.  相似文献   

3.
In this paper, two novel networked model predictive control schemes based on neighbourhood optimization are presented for on-line optimization and control of a class of serially connected processes (known as the cascade processes in some references), in which the on-line optimization of the whole system is decomposed into that of several small-scale subsystems in distributed structures. Under network environment, the connectivity of the communication network is assumed to be sufficient for each subsystem to exchange information with its neighbour subsystems. An iterative algorithm for networked MPC and a networked MPC algorithm with one-step delay communication are developed according to different network capacities. The optimality of the iteration based networked MPC algorithm is analyzed and the nominal stability is derived for unconstrained distributed control systems. The nominal stability with one-step delay communication is employed for distributed control systems without the inequality constraints. Finally, an illustrative example and the simulation study of the fuel feed flow control for the walking beam reheating furnace are provided to test the effectiveness and practicality of the proposed networked MPC algorithms.  相似文献   

4.
In this work, synthesis of robust distributed model predictive control (MPC) is presented for a class of linear systems subject to structured time-varying uncertainties. By decomposing a global system into smaller dimensional subsystems, a set of distributed MPC controllers, instead of a centralised controller, are designed. To ensure the robust stability of the closed-loop system with respect to model uncertainties, distributed state feedback laws are obtained by solving a min–max optimisation problem. The design of robust distributed MPC is then transformed into solving a minimisation optimisation problem with linear matrix inequality constraints. An iterative online algorithm with adjustable maximum iteration is proposed to coordinate the distributed controllers to achieve a global performance. The simulation results show the effectiveness of the proposed robust distributed MPC algorithm.  相似文献   

5.
In this paper, a non-fragile observer-based output feedback control problem for the polytopic uncertain system under distributed model predictive control (MPC) approach is discussed. By decomposing the global system into some subsystems, the computation complexity is reduced, so it follows that the online designing time can be saved.Moreover, an observer-based output feedback control algorithm is proposed in the framework of distributed MPC to deal with the difficulties in obtaining the states measurements. In this way, the presented observer-based output-feedback MPC strategy is more flexible and applicable in practice than the traditional state-feedback one. What is more, the non-fragility of the controller has been taken into consideration in favour of increasing the robustness of the polytopic uncertain system. After that, a sufficient stability criterion is presented by using Lyapunov-like functional approach, meanwhile, the corresponding control law and the upper bound of the quadratic cost function are derived by solving an optimisation subject to convex constraints. Finally, some simulation examples are employed to show the effectiveness of the method.  相似文献   

6.
A class of large scale systems, which is naturally divided into many smaller interacting subsystems, are usually controlled by a distributed or decentralized control framework. In this paper, a novel distributed model predictive control (MPC) is proposed for improving the performance of entire system. In which each subsystem is controlled by a local MPC and these controllers exchange a reduced set of information with each other by network. The optimization index of each local MPC considers not only the performance of the corresponding subsystem but also that of its neighbours. The proposed architecture guarantees satisfactory performance under strong interactions among subsystems. A stability analysis is presented for the unconstrained distributed MPC and the provided stability results can be employed for tuning the controller. Experiment of the application to accelerated cooling process in a test rig is provided for validating the efficiency of the proposed method.  相似文献   

7.
Distributed model predictive control (MPC), having been proven to be efficient for large-scale control systems, is essentially enabled by communication network connections among involved subsystems (agents). This paper studies the distributed MPC problem for a class of continuous-time decoupled nonlinear systems subject to communication delays. By using a robustness constraint and designing a waiting mechanism, a delay-involved distributed MPC scheme is proposed. Furthermore, the iterative feasibility and stability properties are analyzed. It is shown that, if the communication delays are bounded by an upper bound, and the cooperation weights and the sampling period are designed appropriately, the overall system state converges to the equilibrium point. The theoretical results are verified by a simulation study.  相似文献   

8.
Coordination and control approaches based on model predictive control (MPC) have been widely investigated for traffic signal control in urban traffic networks. However, due to the complex non‐linear characters of traffic flows and the large scale of traffic networks, a basic challenge faced by these approaches is the high online computational complexity. In this paper, to reduce the computational complexity and improve the applicability of traffic signal control approaches based on MPC in practice, we propose a distributed MPC approach (DCA‐MPC) to coordinate and optimize the signal splits. Instead of describing the dynamics of traffic flow within each link of the traffic network with a simplified linear model, we present an improved nonlinear traffic model. Based on the nonlinear model, an MPC optimization framework for the signal splits control is developed, whereby the interactions between subsystems are accurately modeled by employing two interconnecting constraints. In addition, by designing a novel dual decomposition strategy, a distributed coordination algorithm is proposed. Finally, with a benchmark traffic network, experimental results are given to illustrate the effectiveness of the proposed method.  相似文献   

9.
A linear-dynamic network consists of a directed graph in which the nodes represent subsystems and the arcs model dynamic couplings. The local state of each subsystem evolves according to discrete linear dynamics that depend on the local state, local control signals, and control signals of upstream subsystems. Such networks appear in the model predictive control (MPC) of geographically distributed systems such as urban traffic networks and electric power grids. In this correspondence, we propose a decomposition of the quadratic MPC problem into a set of local subproblems that are solved iteratively by a network of agents. A distributed algorithm based on the method of feasible directions is developed for the agents to iterate toward a solution of the subproblems. The local iterations require relatively low effort to arrive at a solution but at the expense of high communication among neighboring agents and with a slower convergence rate.  相似文献   

10.
基于协调的变风量空调系统分布式预测控制   总被引:1,自引:0,他引:1  
在实验和系统动力学行为分析的基础上,建立了变风量空调实验系统的内部模型,并分解为7个子系统。各个子系统分别采用模型预测控制(MPC)进行局部优化控制。在保证各个子系统之间网络连通和信息共享的基础上,将各个MPC的局部目标组合成系统级目标,从而把大规模的变风量空调控制系统在线优化问题转化为各子系统小规模的分布式优化问题。通过仿真和实验研究,验证了系统控制的效果。  相似文献   

11.
This paper considers a class of cyber‐physical networked systems, which are composed of many interacted subsystems, and are controlled in a distributed framework. The operating point of each subsystem changes with the varying of working conditions or productions, which may cause the change of the interactions among subsystems correspondingly. How to adapt to this change with good closed‐loop optimization performance and appropriate information connections is a problem. To solve this problem, the impaction of a subsystem's control action on the performance of related closed‐loop subsystems is first deduced for measuring the coupling among subsystems. Then, a distributed model predictive control (MPC) for tracking, whose subsystems online reconfigure their information structures, is proposed based on this impaction index. When the operating points changed, each local MPC calculates the impaction indices related to its structural downstream subsystems. If and only if the impaction index exceeds a defined bound, its behavior is considered by its downstream subsystem's MPC. The aim is to improve the optimization performance of entire closed‐loop systems and avoid the unnecessary information connections among local MPCs. Besides, contraction constraints are designed to guarantee that the overall system converges to the set points. The stability analysis is also provided. Simulation results show that the proposed impaction index is reasonable along with the efficiency of the proposed distributed MPC.  相似文献   

12.
This paper is concerned with the distributed model predictive control (MPC) problem for a class of discrete-time Markovian jump linear systems (MJLSs) subject to actuator saturation and polytopic uncertainty in system matrices. The global system is decomposed into several subsystems which coordinate with each other. A set of distributed controllers is designed by solving a min-max optimization problem in terms of the solutions of linear matrix inequalities (LMIs). An iterative algorithm is developed to achieve the online computation. Finally, a simulation example is employed to show the effectiveness of the proposed algorithm.   相似文献   

13.
网络信息模式下分布式系统协调预测控制   总被引:6,自引:3,他引:3  
郑毅  李少远 《自动化学报》2013,39(11):1778-1786
工业系统中广泛存在一类由多个相互关联的子系统组成的大系统. 尽管分布式控制结构的性能没有集中式控制好,但由于其具有较高的灵活性和容错性,相对于集中控制更加适合控制上述系统.在保持容错性的情况下如何提高系统的整体性能是分布式控制的一个难点问题.本文提出了一种分布式预测控制(Distributed model predictive control, DMPC)方法,该方法通过在各子系统预测控制器的性能指标中加入输入变量对其下游子系统的影响的二次函数,来扩大分布式预测控制的协调度,进而在不增加网络连通度,不改变系统容错性的前提下,提高系统的性能.另外,本文给出了基于该协调策略的带输入约束的分布式预测控制器的设计方法,在初始可行的前提下,该方法相继可行并可保证系统渐近稳定.  相似文献   

14.
This paper investigates the distributed model predictive control (MPC) problem of linear systems where the network topology is changeable by the way of inserting new subsystems, disconnecting existing subsystems, or merely modifying the couplings between different subsystems. To equip live systems with a quick response ability when modifying network topology, while keeping a satisfactory dynamic performance, a novel reconfiguration control scheme based on the alternating direction method of multipliers (ADMM) is presented. In this scheme, the local controllers directly influenced by the structure realignment are redesigned in the reconfiguration control. Meanwhile, by employing the powerful ADMM algorithm, the iterative formulas for solving the reconfigured optimization problem are obtained, which significantly accelerate the computation speed and ensure a timely output of the reconfigured optimal control response. Ultimately, the presented reconfiguration scheme is applied to the level control of a benchmark four-tank plant to illustrate its effectiveness and main characteristics.   相似文献   

15.
In Large Scale Systems the concept of centrality fails due to the lack of centralized computing capability. The control of such systems has to be performed using multiple control agents. In this case, the matter of interactions among neighboring subsystems needs to be considered. In this paper, a water control system in the Netherlands is studied as a real large scale system. A multi‐agent scheme is applied to control the flow through the system which is decomposed into two interconnected subsystems. Each agent employs a model‐based predictive control (MPC) technique. The model of this large scale system is nonlinear and nonconvex. Therefore, an augmented Lagrangian pattern search optimization algorithm is used to implement multi‐agent MPC for this system. This proposed algorithm is applied by each control agent to solve its own interconnected optimization problem, at each subsystem of whole the water system. Simulation results show the effectiveness of the proposed approach.  相似文献   

16.
This paper proposes a distributed model predictive control (MPC) strategy for a large-scale system that consists of several dynamically coupled nonlinear systems with decoupled control constraints and disturbances. In the proposed strategy, all subsystems compute their control signals by solving local optimizations constrained by their nominal decoupled dynamics. The dynamic couplings and the disturbances are accommodated through new robustness constraints in the local optimizations. The paper derives relationships among, and designs procedures for, the parameters involved in the proposed distributed MPC strategy based on the analysis of the recursive feasibility and the robust stability of the overall system. The paper shows that, for a given bound on the disturbances, the recursive feasibility is guaranteed if the sampling interval is properly chosen. Moreover, it establishes sufficient conditions for the overall system state to converge to a robust positively invariant set. The paper illustrates the effectiveness of the proposed distributed MPC strategy by applying it to three coupled cart-(nonlinear) spring–damper subsystems.  相似文献   

17.
本文针对一类由状态相互耦合的子系统组成的分布式系统, 提出了一种可以处理输入约束的保证稳定性的非 迭代协调分布式预测控制方法(distributed model predictive control, DMPC). 该方法中, 每个控制器在求解控制率时只与 其它控制器通信一次来满足系统对通信负荷限制; 同时, 通过优化全局性能指标来提高优化性能. 另外, 该方法在优化 问题中加入了一致性约束来限制关联子系统的估计状态与当前时刻更新的状态之间的偏差, 进而保证各子系统优化问 题初始可行时, 后续时刻相继可行. 在此基础上, 通过加入终端约束来保证闭环系统渐进稳定. 该方法能够在使用较少 的通信和计算负荷情况下, 提高系统优化性能. 即使对于强耦合系统同样能够保证优化问题的递推可行性和闭环系统的 渐进稳定性. 仿真结果验证了本文所提出方法的有效性.  相似文献   

18.
In this paper, a distributed output feedback model predictive control (OFMPC) algorithm is presented for the polytopic uncertain system subject to randomly occurring actuator saturation and packet loss. Compared with the intensively applied state feedback control in MPC, the OFMPC is more feasible to the real world because the system states are often unmeasurable. With taking both actuator saturation and packet loss into account, the presented OFMPC algorithm is more practical. Moreover, by splitting the controller inputs into two independent parts, the presented dynamic output feedback control (DOFC) strategy provides more freedom to the controller design. With the global system decomposed into some subsystems, the computation complexity is reduced, thus the online designing time can be saved. By defining the estimation error function and forming an augmented system to handle the DOFC and by transforming the nonlinear feedback law into a convex hull of linear feedback laws, the distributed controllers are obtained by solving a linear matrix inequality (LMI) optimization problem. Finally, some simulation examples are employed to show the effectiveness of the techniques proposed in this paper. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A wireless sensor and actuator network (WSAN) is a class of networked control systems. In WSANs, sensors and actuators are located in a distributed way, and communicate to controllers through a wireless communication network such as a multi-hop network. In this paper, we propose a model predictive control (MPC) method for co-design of control and routing of WSANs. MPC is an optimal control strategy based on numerical optimization. The control input is calculated by solving the finite-time optimal control problem at each discrete time. In the proposed method, a WSAN is modeled by a switched linear system. In the finite-time optimal control problem, a control input and a mode corresponding to a communication path are optimized simultaneously. The proposed method is demonstrated by a numerical example.  相似文献   

20.
In this paper, we propose a model predictive control (MPC) algorithm for switched nonlinear systems under average dwell-time switching signals. Assuming that a stabilizing MPC controller exists for each of the subsystems, we show that recursive feasibility of the repeatedly solved optimal control problem and asymptotic stability of the closed-loop switched system can be established if a certain average dwell-time condition is satisfied. If the switching times are unknown a priori and cannot be detected instantly, the MPC controller calculated for the previously active subsystem might not be stabilizing for the newly activated subsystem, thus possibly leading to an unstable closed-loop system. It is shown that if the switches can be detected fast enough, then still ultimate boundedness in an arbitrarily small region around the origin can be ensured, i.e., the proposed MPC algorithm is inherently practically robust with respect to small errors in the detection of the switching times. Finally, we apply our results to a continuous stirred-tank reactor (CSTR) with two different modes of operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号