首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The hybridization of thermoplastic natural rubber based on carbon fiber (CF) and kenaf fiber (KF) was investigated for its mechanical and thermal properties. Hybrid composites were fabricated with a melt‐blending method in an internal mixer. Samples with overall fiber contents of 5, 10, 15, and 20 vol % were subjected to flexural testing, and samples with up to 30% fiber content were subjected to impact testing. For flexural testing, generally, the strength and modulus increased up to 15 vol % and then declined. However, for impact testing, higher fiber contents resulted in an increment in strength in both treated and untreated composites. Thermal analysis was carried out by means of dynamic mechanical analysis on composites with 15 vol % fiber content with fractions of CF to KF of 100/0, 70/30, 50/50, 30/70, and 0/100. Generally, the storage modulus, loss modulus, and tan δ for the untreated hybrid composite were more consistent and better than those of the treated hybrid composites. The glass‐transition temperature of the treated hybrid composite was slightly lower than that of the untreated composite, which indicated poor damping properties. A scanning electron micrograph of the fracture surface of the treated hybrid composite gave insight into the damping characteristics. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
The present article reports the development and characterization of carbon nanofiber (CNF)‐incorporated carbon/phenolic multiscale composites. Vapor‐grown CNFs were dispersed homogeneously in to phenolic resin using an effective dispersion route, and carbon fabrics were subsequently impregnated with the CNF‐dispersed resin to develop carbon fiber/CNF/phenolic resin multiscale composites. Mechanical and thermal transmission properties of multiscale composites were characterized. Elastic modulus and thermal conductivity of neat carbon/phenolic and multiscale composites were predicted and compared with the experimental results. It was observed that incorporation of only 1.5 wt % CNF resulted in 10% improvement in Young's modulus, 12% increase in tensile strength, and 36% increase in thermal conductivity of carbon/phenolic composites. Fracture surface of composite samples revealed the formation of stronger fiber/matrix interface in case of multiscale composites than neat carbon/phenolic composites. Enhancement of above properties through CNF addition has been explained, and the difference between the predicted values and experimental results has been discussed. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
This study focuses on the performance characteristics of wood/short carbon fiber hybrid biopolyamide11 (PA11) composites. The composites were produced by melt‐compounding of the fibers with the polyamide via extrusion and injection molding. The results showed that mechanical properties, such as tensile and flexural strength and modulus of the wood fiber composites were significantly higher than the PA11 and hybridization with carbon fiber further enhanced the performance properties, as well as the thermal resistance of the composites. Compared to wood fiber composites (30% wood fiber), hybridization with carbon fiber (10% wood fiber and 20% carbon fiber) increased the tensile and flexural modulus by 168% and 142%, respectively. Izod impact strength of the hybrid composites exhibited a good improvement compared to wood fiber composites. Thermal properties and resistance to water absorption of the composites were improved by hybridization with carbon fiber. In overall, the study indicated that the developed hybrid composites are promising candidates for high performance applications, where high stiffness and thermal resistance are required. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43595.  相似文献   

4.
Interply and intraply hybrid composites based on Bisphenol A Dicyanate ester (BADCy), high strength carbon fibers T300, and high modulus carbon fibers M40 were prepared by monofilament dip‐winding and press molding technique. The tensile, flexural, interlaminar shear properties and SEM analysis of the hybrid composites with different fiber content and fiber arrangement were investigated. The results indicated that the mechanical properties of intraply hybrid composites were mainly determined by fiber volume contents. When the ratio of fiber volume content was close to 1:1, the intraply hybrid composites possessed lowest tensile and flexural strength. The mechanical properties of interply hybrid composite mainly depended on the fiber arrangement, instead of the fiber volume contents. The hybrid composites using T300 fiber layout as outside layer possessed high flexural strength and low flexural modulus, which was close to that of T300/BADCy composites. The hybrid composites ([(M40)x/(T300)y]S) using M40 fiber layout as outside layer and T300 fibers in the mid‐plane had high flexural modulus and interlaminar shear strength. POLYM. COMPOS., 2010. © 2010 Society of Plastics Engineers  相似文献   

5.
Recycled high‐density polyethylene (RHDPE)/coir fiber (CF)‐reinforced biocomposites were fabricated using melt blending technique in a twin‐screw extruder and the test specimens were prepared in an automatic injection molding machine. Variation in mechanical properties, crystallization behavior, water absorption, and thermal stability with the addition of fly ash cenospheres (FACS) in RHDPE/CF composites were investigated. It was observed that the tensile modulus, flexural strength, flexural modulus, and hardness properties of RHDPE increase with an increase in fiber loading from 10 to 30 wt %. Composites prepared using 30 wt % CF and 1 wt % MA‐g‐HDPE exhibited optimum mechanical performance with an increase in tensile modulus to 217%, flexural strength to 30%, flexural modulus to 97%, and hardness to 27% when compared with the RHDPE matrix. Addition of FACS results in a significant increase in the flexural modulus and hardness of the RHDPE/CF composites. Dynamic mechanical analysis tests of the RHDPE/CF/FACS biocomposites in presence of MA‐g‐HDPE revealed an increase in storage (E′) and loss (E″) modulus with reduction in damping factor (tan δ), confirming a strong influence between the fiber/FACS and MA‐g‐HDPE in the RHDPE matrix. Differential scanning calorimetry, thermogravimetric analysis thermograms also showed improved thermal properties in the composites when compared with RHDPE matrix. The main motivation of this study was to prepare a value added and low‐cost composite material with optimum properties from consumer and industrial wastes as matrix and filler. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42237.  相似文献   

6.
One emerging market for thermally and electrically conductive resins is bipolar plates for use in fuel cells. Adding carbon fillers to thermoplastic resins increases the composite thermal and electrical conductivity. These fillers have an effect on the composite tensile and flexural properties, which are also important for bipolar plates. In this study, various amounts of three different types of carbon (carbon black, synthetic graphite particles, and carbon fibers) were added to Vectra A950RX liquid‐crystal polymer. In addition, composites containing combinations of fillers were also investigated via a factorial design. The tensile and flexural properties of the resulting composites were then measured. The objective of this study was to determine the effects and interactions of each filler with respect to the tensile and flexural properties. The addition of carbon black caused the tensile and flexural properties to decrease. Adding synthetic graphite particles caused the tensile and flexural modulus to increase. The addition of carbon fiber caused the tensile and flexural modulus and ultimate flexural strength to increase. In many cases, combining two different fillers caused a statistically significant effect on composite tensile and flexural properties at the 95% confidence level. For example, when 40 wt % synthetic graphite particles and 4 wt % carbon black were combined, the composite ultimate tensile and flexural strength increased more than what would be expected from the individual additive effect of each single filler. It is possible that linkages were formed between the carbon black and synthetic graphite particles that resulted in improved ultimate tensile and flexural strength. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
The mechanical and thermal properties of interply hybrid carbon fiber (continuous and spun fabric)/phenolic composite materials have been studied. Hybrid carbon/phenolic composites (hybrid CP) with continuous carbon fabric of high tensile, flexural strength and spun carbon fabric of better interlaminar shear strength and lower thermal conductivity are investigated in terms of mechanical properties as well as thermal properties.Through hybridization, tensile strength and modulus of spun type carbon fabric reinforced phenolic composites (spun CP) increased by approximately 28% and 20%, respectively. Hybrid CP also exhibits better interlaminar shear strength than continuous carbon fabric/phenolic composites (continuous CP).The in-plane thermal conductivity of hybrid CP is 4-8% lower than that of continuous CP. As continuous filament type carbon fiber volume fraction increases, the transversal thermal conductivity of hybrid CP decreases.The erosion rate and insulation index were examined using torch test. Spun CP has a higher insulation index than continuous CP and hybrid CP over the entire temperature range. Hybrid CP with higher content of spun fabric exhibits higher insulation index as well as lower erosion rate.  相似文献   

8.
《Polymer Composites》2017,38(7):1412-1417
Nowadays, hybrid composites are one of the important materials in industry due to their special properties. In this research, hybrid oxidized polyacrylonitrile (PAN) and carbon fibers reinforcement were used in epoxy matrix. The hybrid composites were fabricated using the hand lay‐up technique by placing the reinforcements in different layering sequences. Thermal and mechanical properties of these hybrid composites were investigated by thermal analysis, horizontal burning, tensile and bending tests. The tensile test results indicated that increasing oxidized polyacrylonitrile fibers (OPFs) to carbon fibers ratio decreased tensile strength and elastic modulus but increased failure strain. Hybrid oxidized PAN and carbon fibers reinforcement in composites led to decreasing flexural stress and modulus, and increasing flame retardancy. Thermal analysis results also showed that the maximum rate of mass loss in all composites was 370.6°C. It was also found that the maximum and minimum amounts of char residue at 900°C were related to the composites with four layers of carbon and OPFs, respectively. POLYM. COMPOS., 38:1412–1417, 2017. © 2015 Society of Plastics Engineers  相似文献   

9.
The main objective of this work was to investigate the effect of reinforcements at different scales on the mechanical properties of natural fiber-reinforced composites. Pure jute and interlaminar hybrid jute/glass fiber-reinforced polymer composites were fabricated. Different types of fillers in two weight fractions (1 and 3 wt. %) were used as second reinforcements in the hybrid jute/glass composites. Tensile, flexural, and impact tests were performed. It was found that the macroscale inter-play hybridization significantly improved the mechanical properties of the pure jute fiber based composites. When the fillers are used as second hybridization, the modified composites presented higher mechanical properties when compared to pure jute composites. However, the effect of fillers on the mechanical properties of the hybrid composites presented various trends due to the interaction between several factors (i.e., particle scale, content, and nature), which cannot always be separated. Increasing the synthetic filler content improved the tensile properties of the filled hybrid composites, while increasing the natural filler content worsen the tensile properties. The flexural strength of the multiscale hybrid composites was improved, while the impact properties were negatively affected.  相似文献   

10.
In this study, the impact and flexural properties of woven basalt fiber/phenolic (BFP), woven carbon fiber/phenolic (CFP) and woven basalt/woven carbon hybrid phenolic (BCFP) composites are investigated. The hybridization effect of woven basalt and woven carbon fibers on the impact energy absorption and flexural properties is investigated for various weight ratios of basalt/carbon hybrid fibers such as 1:0, 0.83:0.17, 0.68:0.32, 0.61:0.39, 0.34:0.66 and 0:1. It is found that the impact properties of the composites are strongly improved when the basalt fiber increased. Impact energy absorption of CFP composite showed a regular trend of increase with increasing weight ratio of basalt fiber in hybrid fiber composite. The lowest impact energy absorption values are found for the composites with weight ratio 0:1 (CFP), with average of 70 kJ/m2. Corresponding values for energy absorptions are obtained for 0.83:0.17, 0.68:0.32, 0.61:0.39, 0.34:0.66 basalt/carbon weight ratio in hybrid composites. The impact energy absorption of hybrid composites (BCFP) shows the highest value with an average of 219 kJ/m2, when the weight ratio of 0.83:0.17 is used. Finally, the impact energy absorption of BFP composites with the weight ratio of 1:0 shows the highest value of 268 kJ/m2. The experimental evidence shows that the hybrid composites based on combinations of stiff carbon fibers and tough basalt fibers have good flexural properties and therefore, they can be used as promising materials in a number of engineering sectors such as the protective structures.  相似文献   

11.
Hybrid composites of polypropylene reinforced with glass fibers and basalt fibers were fabricated by vented injection molding machine which is named the direct fiber feeding injection molding (DFFIM) process. Polyamide 6 and maleic anhydride‐grafted polypropylene has been used as a coupling agent to improve the interfacial bonding between the fibers and matrix. Two types of vented injection molding machines with a different check ring and mold were used for making specimens. The fiber lengths were analyzed to identify the most suitable check ring and mold for the DFFIM process. The mechanical properties of the hybrid composites were investigated by tensile, flexural and Izod impact tests. The interfacial morphology of the fractured tensile specimens was studied by using scanning electron microscopy and showed that there is a fiber agglomeration phenomenon that occurs in the hybrid composites, and it has a significant effect on the mechanical properties of hybrid composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45472.  相似文献   

12.
Natural fiber composites are known to have lower mechanical properties than glass or carbon fiber reinforced composites. The hybrid natural fiber composites prepared in this study have relatively good mechanical properties. Different combinations of woven and non‐woven flax fibers were used. The stacking sequence of the fibers was in different orientations, such as 0°, +45°, and 90°. The composites manufactured had good mechanical properties. A tensile strength of about 119 MPa and Young's modulus of about 14 GPa was achieved, with flexural strength and modulus of about 201 MPa and 24 GPa, respectively. For the purposes of comparison, composites were made with a combination of woven fabrics and glass fibers. One ply of a glass fiber mat was sandwiched in the mid‐plane and this increased the tensile strength considerably to 168 MPa. Dynamic mechanical analysis was performed in order to determine the storage and loss modulus and the glass transition temperature of the composites. Microstructural analysis was done with scanning electron microscopy. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
混杂FRP复合材料单轴拉伸性能研究   总被引:1,自引:0,他引:1  
为制备优异综合性能的混杂FRP(Fiber Reinforced Plastic/Polymer)复合材料,本文试验研究了芳纶、玄武岩、玻璃纤维与碳纤维混杂复合材料的单轴拉伸力学性能,分析了纤维种类、碳纤维相对体积含量、铺层方式等混杂参数对混杂效应的影响。结果表明,HFRP(Hybrid FRP)复合材料的单轴拉伸弹性模量基本符合混合定律,层间混杂FRP复合材料均表现出良好的混杂效应。当碳纤维铺层在中间时,碳/芳纶/玻璃层间混杂复合材料的混杂效应系数为0.647,混杂效应最优。  相似文献   

14.
贺佑康  芮平  费楚然  谢飞  张杰 《聚氨酯工业》2022,37(1):12-15,19
以聚氨酯为基体树脂,分别以碳纤维布、玻璃纤维布和这两种纤维布交替铺叠作为增强材料,采用真空辅助灌注成型工艺制备了4种复合材料.考察了纤维布的铺层结构对复合材料的弯曲、拉伸和冲击性能的影响.结果显示,复合材料的拉伸模量和弯曲模量随碳纤维含量增加而增加,冲击强度则降低.分别采用TGA、DMA和SEM对复合材料的热性能、界面...  相似文献   

15.
The aim of this study was to investigate the performance of UHMWPE/HDPE-reinforced kenaf, basalt and hybrid kenaf/basalt composites. Mechanical testing of these samples was carried out such as tensile, flexural (three-point bending) and an impact test (Charpy). Pure resin (UHMWPE/HDPE) samples were tested and compare with reinforced 10% weight fraction of kenaf, basalt and hybrid kenaf/basalt samples to identifying their contribution and potential in this new composite material. UHMWPE/ HDPE sample was produced in constant ratio 60:40 respectively via extrusion process. Basalt reinforced UHMWPE/HDPE generates the highest elastic modulus result compared to kenaf and hybrid kenaf/basalt as a reinforcement material. The tensile results of kenaf reinforcement UHMWPE/HDPE samples are significantly higher (20%) than pure blend resin, which is an indication for good performance of kenaf, basalt and hybrid kenaf/basalt to be used in UHMWPE/HDPE-blend polymers. The flexural and Charpy strengths show the drawback results, where performance of polymer is reduced 5% with the absence of kenaf. It can be concluded that kenaf, basalt and hybrid kenaf/basalt fiber successfully increase the UHMWPE/HDPE blends performance especially under tensile loading.  相似文献   

16.
A potential application for conductive resins is in bipolar plates for use in fuel cells. The addition of carbon filler can increase the electrical and thermal conductivities of the polymer matrix but will also have an effect on the tensile and flexural properties, important for bipolar plates. In this research, three different types of carbon (carbon black, synthetic graphite, and carbon nanotubes) were added to polypropylene and the effects of these single fillers on the flexural and tensile properties were measured. All three carbon fillers caused an increase in the tensile and flexural modulus of the composite. The ultimate tensile and flexural strengths decreased with the addition of carbon black and synthetic graphite, but increased for carbon nanotubes/polypropylene composites due to the difference in the aspect ratio of this filler compared to carbon black and synthetic graphite. Finally, it was found that the Nielsen model gave the best prediction of the tensile modulus for the polypropylene based composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
本文设计和制作了两种混杂模式的三维正交机织玄武岩/芳纶混编复合材料,分别是层间混杂和层内混杂模式。对其拉伸性能和剪切性能进行了测试和分析,结果表明,层内混杂复合材料的拉伸性能和剪切性能比层间混杂复合材料的好,层内混杂复合材料的归一化强度和归一化模量分别比层间混杂复合材料的高22.12%和16.9%,层内混杂复合材料的剪切强度和剪切模量分别比层间混杂复合材料的高19.61%和26.03%;对于层间混杂复合材料,纬向的归一化强度比经向的高4.06%,但厚度方向上纱线的存在和织造工艺中经纱预加张力的影响,使纬向的归一化模量比经向的降低11.44%。  相似文献   

18.
Concretes containing different types of hybrid fibers at the same volume fraction (0.5%) were compared in terms of compressive, splitting tensile, and flexural properties. Three types of hybrid composites were constructed using fiber combinations of polypropylene (PP) and carbon, carbon and steel, and steel and PP fibers. Test results showed that the fibers, when used in a hybrid form, could result in superior composite performance compared to their individual fiber-reinforced concretes. Among the three types of hybrids, the carbon-steel combination gave concrete of the highest strength and flexural toughness because of the similar modulus and the synergistic interaction between the two reinforcing fibers.  相似文献   

19.
Epoxy resin nanocomposites incorporated with 0.5, 1, 2, and 4 wt % pristine graphene and modified graphene oxide (GO) nanoflakes were produced and used to fabricate carbon fiber‐reinforced and glass fiber‐reinforced composite panels via vacuum‐assisted resin transfer molding process. Mechanical and thermal properties of the composite panels—called hierarchical graphene composites—were determined according to ASTM standards. It was observed that the studied properties were improved consistently by increasing the amount of nanoinclusions. Particularly, in the presence of 4 wt % GO in the resin, tensile modulus, compressive strength, and flexural modulus of carbon fiber (glass fiber) composites were improved 15% (21%), 34% (84%), and 40% (68%), respectively. Likewise, with inclusion of 4 wt % pristine graphene in the resin, tensile modulus, compressive strength, and flexural modulus of carbon fiber (glass fiber) composites were improved 11% (7%), 30% (77%), and 34% (58%), respectively. Also, thermal conductivity of the carbon fiber (glass fiber) composites with 4% GO inclusion was improved 52% (89%). Similarly, thermal conductivity of the carbon fiber (glass fiber) composites with 4% pristine graphene inclusion was improved 45% (80%). The reported results indicate that both pristine graphene and modified GO nanoflakes are excellent options to enhance the mechanical and thermal properties of fiber‐reinforced polymeric composites and to make them viable replacement materials for metallic parts in different industries, such as wind energy, aerospace, marine, and automotive. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40826.  相似文献   

20.
Ultrahigh molecular weight polyethylene (UHMWPE) fiber/carbon fiber hybrid composites were prepared by inner‐laminar and interlaminar hybrid way. The mechanical properties, dynamic mechanical analysis (DMA), and morphologies of the composites were investigated and compared with each other. The results show that the hybrid way was the major factor to affect mechanical and thermal properties of hybrid composites. The resultant properties of inner‐laminar hybrid composite were better than that of interlaminar hybrid composite. The bending strength, compressive strength, and interlaminar shear strength of hybrid composites increased with an increase in carbon fiber content. The impact strength of inner‐laminar hybrid composite was the largest (423.3 kJ/m2) for the UHMWPE fiber content at 43 wt % to carbon fiber. The results show that the storage modulus (E′), dissipation factor (tan δ), and loss modulus (E″) of the inner‐laminar hybrid composite shift toward high temperature remarkably. The results also indicate that the high‐performance composite with high strength and heat resistance may be prepared by fibers' hybrid. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1880–1884, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号