首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 134 毫秒
1.
We have studied the adiabatic and autothermal oxidative coupling of methane over Pt on -Al2O3 monoliths at space velocities above 105 h-1. The selectivity to C2 hydrocarbons (primarily acetylene) reaches a maximum of around 20% at low fuel to oxygen ratios, low dilution, and high space velocities. These conditions promote a large temperature gradient in the monolith, with an exit temperature of nearly 1500°C and an entrance temperature of less than 200°C. This temperature gradient appears to be the driving force for C2 hydrocarbon formation under these conditions. Both homogeneous and heterogeneous reactions may be involved in producing coupling products, and a combustion model predicts C2 selectivities similar to those observed.  相似文献   

2.
A double layered catalyst bed of Sr/La2O3 followed by MoO3/SiO2 has been used to produce C2 hydrocarbons and formaldehyde from a CH4/air mixture with a formaldehyde space time yield of 187 g (kg cat)–1 h–1, which is significantly higher than those yields obtained with single bed catalysts or with mechanically mixed catalyst bed at ambient pressure and 630 ° C.  相似文献   

3.
The catalytic and electrocatalytic oxidation of methane to ethane and ethylene was studied at 900 °C over a gold-supported yttria-stabilized zirconia (Au-YSZ) catalyst. The catalyst was found to be active for C2 formation with C2 selectivities up to 67% and C2 yields up to 15%. Yttria-stabilized zirconia compared favorably to unstabilized yttria-zirconia. Electrochemical oxygen pumping was investigated and found to affect product distribution.  相似文献   

4.
The conversion of methane and the selectivities to the various products have been measured at 700 and 775 °C on a variety of phosphates of La(III), Zr(IV), V(V), Cr(III), Mn(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Al(III), B(III), Pb(II), Bi(III) and Sm(III) in the presence and absence of carbon tetrachloride. The conversions reach as high as 30 and 49% at 700 and 775 °C, respectively, with methane and oxygen at partial pressures of 200 and 25 Torr, respectively. The highest C2+ selectivities (61 and 82%, respectively) were obtained for lead(II) phosphate at 700 and 775 °C, respectively. In general the conversions and C2+ selectivities are enhanced on addition of carbon tetrachloride (1.1 Torr) to the feedstream, although there are notable exceptions. Significantly high selectivities to formaldehyde are observed with a number of the catalysts, in particular 32% with boron(III)phosphate.  相似文献   

5.
Conversion of methane to C2/C3 or higher hydrocarbons in a pulsed DC barrier discharge at atmospheric pressure was studied. Non-equilibrium plasma was generated in the barrier discharge reactor. In this plasma, electrons which had sufficient energy collided with the molecules of methane, which were then activated and coupled to C2/C3 or higher hydrocarbons. The effect of the change of applied voltage, pulse frequency and methane flow rate on methane conversion, selectivities and yields of products was studied. Methane conversion to higher hydrocarbons was about 25% as the maximum. Ethane, propane and ethylene were produced as primary products, including a small amount of unidentified C4 hydrocarbons. The selectivity and yield of ethane as a main product came to about 80% and 17% as the highest, respectively. The selectivities of ethane and ethylene were influenced not by the change of pulse frequency but by the change of applied voltage and methane flow rate. However, in case of propane, the selectivity was independent of those condition changes. The effect of the packing materials such as glass and A12O3 bead on methane conversion was also considered, showing that A12O3 played a role in enhancing the selectivity of ethane remarkably as a catalyst.  相似文献   

6.
Separation of higher hydrocarbons from methane is an important and energy-intensive operation in natural gas processing. We present a detailed investigation of thin and oriented MFI zeolite membranes fabricated from 2D MFI nanosheets on inexpensive α-alumina hollow fiber supports, particularly for separation of n-butane, propane, and ethane (“natural gas liquids”) from methane. These membranes display high permeances and selectivities for C2–C4 hydrocarbons over methane, driven primarily by stronger adsorption of C2–C4 hydrocarbons. We study the separation characteristics under unary, binary, ternary, and quaternary mixture conditions at 298 K and 100–900 kPa feed pressures. The membranes are highly effective in quaternary mixture separation at elevated feed pressures, for example allowing n-butane/methane separation factors of 170–280 and n-butane permeances of 710–2,700 GPU over the feed pressure range. We parametrize and apply multicomponent Maxwell–Stefan transport equations to predict the main trends in separation behavior over a range of operating conditions.  相似文献   

7.
《Journal of Catalysis》1999,181(1):104-112
The partial oxidation of methane to methanol and formaldehyde by molecular oxygen has been investigated over crystalline and silica supported FePO4at a pressure of 1 atm and in the temperature range of 723–973 K. The quartz phase of FePO4, as well as silica supported FePO4prepared by impregnation (5 wt%), were examined in a continuous flow reactor. Experiments carried out over FePO4show high selectivity to formaldehyde at low conversion and suggest that formaldehyde is the primary reaction product, but selectivity decreased rapidly as conversion was increased. The highest space-time yield of formaldehyde observed for this catalyst was 59 g/kgcat-h. Above 5% methane conversion, carbon oxides were the only products. For silica-supported FePO4, formaldehyde selectivity did not fall off rapidly, exhibiting a formaldehyde selectivity of 12% at about 10% conversion (STY=285 g/kgcat-h). Quantifiable yields of methanol were observed at very low conversion levels, i.e. below 3% (STY=11 g/kgcat-h). Addition of steam (up to 0.1 atm partial pressure) into the feed stream increased the selectivity to methanol (∼25 g/kg cat/h with up to 3% selectivity) and formaldehyde (∼487 g/kg cat/h with up to 94% selectivity) for the silica-supported FePO4catalyst. Steam addition had little effect on catalyst activity. Characterization results indicate the presence of FePO4, as well as fivefold coordinate Fe3+in silica supported catalyst samples, and this species is proposed to be responsible for methane activation. After catalysis in the presence of steam, the fivefold coordinate iron is present, but a significant fraction of the FePO4has been reduced to Fe2P2O7. Enhanced selectivity in the presence of steam is attributed in part to the ease of the reversible formation of surface hydroxyl groups (P-OH) from pyrophosphate (P-O-P) groups.  相似文献   

8.
Catalytic chlorination of methane was studied over SO 4 2– /ZrO2, Pt/SO 4 2– /ZrO2, and Fe/Mn/SO 4 2– /ZrO2 solid superacid catalysts. The reactions were carried out in a continuous flow reactor under atmospheric pressure, at temperatures below 240°C, with a gaseous hourly space velocity of 1000 ml/g h and a methane to chlorine ratio of 4 to 1. At 200°C with 30% chlorine converted the selectivity in methyl chloride exceeds 90%. At more elevated temperatures, the selectivity decreases but stays above 80% in methyl chloride at 225°C using the sulfated zirconia catalysts. The selectivity can be enhanced by adding platinum to sulfated zirconia catalysts. An iron and manganese-doped catalyst exhibited excellent selectivities at somewhat lower conversions. Methyl chloride is obtained at 235°C in selectivities greater than 85%. No chloroform or carbon tetrachloride is formed. The electrophilic insertion involves electron-deficient metal-coordinated chlorine into the methane C-H bond.Catalysis by solid superacids, 29. For part 28 see ref. [14].  相似文献   

9.
Reaction pathways of methane conversion in dielectric-barrier discharge   总被引:2,自引:0,他引:2  
Conversion of methane to C2, C3, C4 or higher hydrocarbons in a dielectric-barrier discharge was studied at atmospheric pressure. Non-equilibrium plasma was generated in the dielectric-barrier reactor. The effects of applied voltage on methane conversion, as well as selectivities and yields of products were studied. Methane conversion was increased with increasing the applied voltage. Ethane and propane were the main products in a dielectric-barrier discharge at atmospheric pressure. The reaction pathway of the methane conversion in the dielectric-barrier discharge was proposed. The proposed reaction pathways are important because they will give more insight into the application of methane coupling in a DBD at atmospheric pressure.  相似文献   

10.
Conversion of methane in high yields to C4+ nonaromatic hydrocarbons was demonstrated in a recycle system. The principal components of the recycle system included an oxidative coupling reactor with a Mn/Na2WO4/SiO2 catalyst at 800°C for conversion of methane to ethylene, and a reactor with an H-ZSM-5 zeolite at 275°C for subsequent conversion of ethylene to higher hydrocarbons. Total yields of C4+ products were in the range of 60–80%, and yields of C4+ nonaromatic hydrocarbons were in the range of 50–60%. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
CuO-CoO-Cr2O3 mixed with MFI Zeolite (Si/Al = 35) prepared by co-precipitation was used for synthesis gas conversion to long chain hydrocarbon fuel. CuO-CoO-Cr2O3 catalyst was prepared by co-precipitation method using citric acid as complexant with physicochemical characterization by BET, TPR, TGA, XRD, H2-chemisorptions, SEM and TEM techniques. The conversion experiments were carried out in a fixed bed reactor, with different temperatures (225-325 °C), gas hourly space velocity (457 to 850 h−1) and pressure (28-38 atm). The key products of the reaction were analyzed by gas chromatography mass spectroscopy (GC-MS). Significantly high yields of liquid aromatic hydrocarbon products were obtained over this catalyst. Higher temperature and pressure favored the CO conversion and formation of these liquid (C5-C15) hydrocarbons. Higher selectivity of C5 + hydrocarbons observed at lower H2/CO ratio and GHSV of the feed gas. On the other hand high yields of methane resulted, with a decrease in C5+ to C11+ fractions at lower GHSV. Addition of MFI Zeolite (Si/Al = 35) to catalyst CuO-CoO-Cr2O3 resulted a high conversion of CO-hydrogenation, which may be due to its large surface area and small particle size creating more active sites. The homogeneity of various components was also helpful to enhance the synergistic effect of Co promoters.  相似文献   

12.
La2O3 promoted CaO [La/Ca (mol/mol) = 0.05] catalyst shows very high activity and selectivity (methane conversion: 25%, C2-selectivity: 66% and C2-space-time-yield: 864 mmol ·g–1 (cat.)·h–1) with no catalyst deactivation in oxidative coupling of methane to C2-hydrocarbons at 800 ° C.  相似文献   

13.
The partial oxidation of methane was studied over -Al2O3-supported catalysts for Rh loadings between 0.01 and 5.0 wt%. It was found that the activity and selectivities for loadings between 0.5 and 5.0 wt% are almost the same. As an example, detailed information is presented for the 1.0 wt% Rh/-Al2O3, which provides at 750°C (furnace temperature) an activity of 82% and selectivities of 96% to CO and 98% to H2, at a gas hourly space velocity (GHSV) of 720000 ml g–1 h–1. Its activity remained stable during our experiment which lasted 120 h. Possible explanations for this high stability are proposed based on TPR and XRD experiments. Pulse reactions with small pulses of CH4 and CH4/O2 (2/1) were performed over the reduced and unreduced Rh catalysts to probe the mechanistic aspects of the reaction. The partial oxidation of methane to syngas was found to be initiated by metallic rhodium sites, since the CO selectivity increased with increasing number of such sites.  相似文献   

14.
Studies were conducted at atmospheric pressure at temperatures in the range of 400–500°C and fluidizing gas velocities in the range of 0.37–0.58 m/min (at standard temperature and pressure) to evaluate the performance of various cracking catalysts for canola oil conversion in a fluidized-bed reactor. Results show that canola oil conversions were high (in the range of 78–98 wt%) and increased with an increase in both temperature and catalyst acid site density and with a decrease in fluidizing gas velocity. The product distribution mostly consisted of hydrocarbon gases in the C1–C5 range, a mixture of aromatic and aliphatic hydrocarbons in the organic liquid product (OLP) and coke. The yields of C4 hydrocarbons, aromatic hydrocarbons and C2–C4 olefins increased with both temperature and catalyst acid site density but decreased with an increase in fluidizing gas velocity. In contrast, the yields of aliphatic and C5 hydrocarbons followed trends completely opposite to those of C2–C4 olefins and aromatic hydrocarbons. A comparison of performance of the catalysts in a fluidized-bed reactor with earlier work in a fixed-bed reactor showed that selectivities for formation of both C5 and iso-C4 hydrocarbons in a fluidized-bed reactor were extremely high (maximum of 68.7 and 18 wt% of the gas product) as compared to maximum selectivities of 18 and 16 wt% of the gas product, respectively, in the fixed-bed reactor. Also, selectivity for formation of gas products was higher for runs with the fluidized-bed reactor than for those with the fixed-bed reactor, whereas the selectivity for OLP was higher with the fixed-bed reactor. Furthermore, both temperature and catalyst determined whether the fractions of aromatic hydrocarbons in the OLP were higher in the fluidized-bed or fixed-bed reactor.  相似文献   

15.
The addition of F to Ba-Ti mixed oxide catalysts significantly improves the catalytic performances for the oxidative coupling of methane (MOC), which can achieve high C2 yields at wide feed composition range and high GHSV. The effect is particularly marked for the BaF2– TiO2 catalysts containing more than 50 mol% BaF2. The C2 yield of 17% and the C2 selectivity of > 60% were achieved over these catalysts at 700 ° C. After being on stream for 31 h, the 50 mol% BaF2-TiO2 catalysts showed only a 1–1.5% decrease in the C2 yields. Results obtained by XRD show that various Ba-Ti oxyfluoride phases were formed due to the substitution of F to O2–.  相似文献   

16.
CO hydrogenation using cobalt/ manganese oxide catalysts is described and discussed. These catalysts are known to give low methane selectivity with high selectivity to C3 hydrocarbons at moderate reaction conditions (GHSV < 500 h–1, < 600 kPa). In this study the effect of reaction conditions more appropriate to industrial operation are investigated. CO hydrogenation at 1–2 MPa using catalyst formulations with Co/Mn = 0.5 and 1.0 gives selectivities to methane that are comparable to those observed at lower pressures. At the higher pressure the catalyst rapidly deactivates, a feature that is not observed at lower pressures. However, prior to deactivation rates of CO + CO2 conversion > 8 mol/1-catalyst h can be observed. Co-feeding ethene during CO hydrogenation is investigated by the reaction of13C0-12C2H4-H2 mixtures and a significant decrease in methane selectivity is observed but the hydrogenation of ethene is also a dominant reaction. The results show that the co-fed ethene can be molecularly incorporated but in addition it can generate a C, species that can react further to form methane and higher hydrocarbons.  相似文献   

17.
The oxidative coupling of methane has been tested over alkali- and alkaline earth-phosphate catalysts at 700 and 775 °C with and without the introduction of a small quantity of tetrachloromethane (TCM) to the feedstream. In general, the conversion of methane was enhanced by the addition of TCM but the effect on selectivity was dependent on the catalyst being examined. The selectivity to C2 and higher hydrocarbons and that to oxidation products have been shown to have a dependence on the cation radius/charge ratio.  相似文献   

18.
The thermal and catalytic upgrsding of bio‐oil to liquid fuels was studied at atmospheric pressure in a dual reactor system over HZSM‐5, silica‐alumina and a mixed catalyst containing HZSM‐5 and silica‐alumina. This bio‐oil was produced by the rapid thermal processing of the maple wood. In this work, the intent was to improve the catalyst life. Therefore, the first reactor containing no catalyst facilitated thermal cracking of blo‐oil whereas the second reactor containing the desired catalyst upgraded the thermally cracked products. The effects of process variables such as reaction temperature (350°C to 410°C), space velocity (1.8 to 7.2 h?1) and catalyst type on the amounts and quality of organic liquid product (OLP) were investigated, In the case of HZSM‐5 catalyst, the yield of OLP was maximum at 27.2 wt% whereas the selectivity for aromatic hydrocarbons was maximum at 83 wt%. The selectivities towards aromatics and aliphatic hydrocarbons were highest for mixed and silica‐alumina catalysts, respectively. In all catalyst cases, maximum OLP was produced at an optimum reaction temperature of 370°C in both reactors, and at higher space velocity. The gaseous product consisted of CO and CO2, and C1‐C6 hydrocarbons, which amounted to about 20 to 30 wt% of bio‐oil. The catalysts were deactivated due to coking and were regenerated to achieve their original activity.  相似文献   

19.
Upon promoting MgO (prepared via a sol-gel process) with any binary mixture of the alkali metal chlorides, catalytic systems are obtained which are more active, selective and much more stable with time-on-stream than the respective monoalkali promoted MgO in the oxidative coupling of methane (OCM) to C2 hydrocarbons. The best catalytic performance is obtained over (5 mol% NaCl+5 mol% CsCl)/MgO, which exhibits a C2 yield of 19.7% compared to 5.9 and 4.1% over 10 mol% NaCl/MgO and 10 mol% CsCl/MgO, respectively, at atmospheric pressure, a temperature of 750 °C, a space velocity of 15000 cm3 g–1 h–1, = 608 Torr and CH4/O2 = 4. A series of different combinations among the five alkali chlorides were made and the afore-mentioned synergistic effect was always observed. The basicity and base strength distribution of the bialkali chloride systems (measured by the gaseous acid adsorption or benzoic acid titration methods) are significantly higher than those of the respective monoalkali halide systems. The relationship between the catalytic performance and basicity/base strength distribution is explored.  相似文献   

20.
Extended studies on Zn-ZSM-5 catalyst for the production of liquid hydrocarbons in the direct partial oxidation (DPO) of CH4 with O2 are reported. Previously, it was reported that metal-containing ZSM-5 catalysts could produce C5+ hydrocarbons from pure CH4/O2 feeds without feed additives. Zn-ZSM-5 produced the highest C5+ yields of the catalysts tested. This work shows that the method of introducing Zn onto the catalyst, ion-exchange versus impregnation, does not significantly alter C5+ yields if low Zn content is maintained ( 0.4–0.5 wt%). Liquid hydrocarbon yields in this system doubled after 8 h on stream while overall C2+ yields increased by over 300%. Mechanistic implications of these findings are discussed. Finally, processing a natural gas feed over Zn-ZSM-5 gave higher C5+ yields over CH4 feed but these yields were not improved over previously published results using HZSM-5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号