首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For lowering the sintering temperature of silicon carbide ceramics used for solar thermal energy storage technology, O'‐Sialon and silicon nitride were employed as composite phases to construct Sialon‐Si3N4‐SiC composite ceramics. The composite ceramics were synthesized using SiC, Si3N4, quartz, and different alumina sources as starting materials with noncontact graphite‐buried sintering method. Influences of alumina sources on the physical properties and thermal shock resistance of the composites were studied. The results revealed that the employment of O'‐Sialon and silicon nitride could decrease the sintering temperature greatly to 1540°C. The optimum formula G2 prepared from mullite as alumina source achieved the best performances: 66.7 MPa of bending strength, 10.0 W/(m·K) of thermal conductivity. The composition parameter x = 0.4 of O'‐Sialon decreased to 0.04 after 30 cycles thermal shock, and the bending strength increased with a rate of 11.0% due to the increase of O'‐Sialon grain size, and the optimization of microstructure caused by the transformation of O'‐Sialon grains and densification within the samples. The good thermal shock resistance makes the composites suitable for the use as thermal storage materials of concentrated solar power generation.  相似文献   

2.
High-density Si3N4-SiC ceramic nanocomposites have exceptional mechanical properties, but little is known about their electromagnetic wave absorption (EMA) capabilities. In this paper, the effects of sintering temperature and starting material compositions on the dielectric and EMA properties of hot-pressed Si3N4-SiC ceramic nanocomposites were investigated. The real and imaginary permittivities of Si3N4-SiC ceramic nanocomposites increase with increasing sintering temperature or SiC content, particularly at the sintering temperature of 1850°C and SiC content of 50 wt.%. This is primarily due to the improvement of interfacial and defect polarizations, which is caused by the doping of nitrogen into the SiC nanocrystals during the solution-precipitation process. The real and imaginary permittivities of Si3N4-SiC ceramic nanocomposites show decreasing trends as sintering aid content increases. Si3N4-SiC ceramic composites have both good EMA and mechanical properties when they are sintered at 1850°C with 30 wt.% SiC and 5–8 wt.% sintering aids. The minimum reflection loss and maximum flexural strength reach -58 dB and 586 MPa, respectively. Materials with multilayered structural designs have both strong and broad EMA properties.  相似文献   

3.
A novel Pr3Si2C2 additive was uniformly coated on SiC particles using a molten-salt method to fabricate a high-density SiC ceramics via liquid-phase spark plasma sintering at a relatively low temperature (1400°C). According to the calculated Pr–Si–C-phase diagram, the liquid phase was formed at ∼1217°C, which effectively improved the sintering rate of SiC by the solution–reprecipitation process. When the sintering temperature increased from 1400 to 1600°C, the thermal conductivity of SiC increased from 84 to 126 W/(m K), as a consequence of the grain growth. However, an increasing amount of the sintering additive increased the interfacial thermal resistance, resulting in a decrease of thermal conductivity of the materials. The highest thermal conductivity of 141 W/(m K) was obtained for the material having the largest SiC grains and an optimized amount of the additive at the grain boundaries and triple junctions. The proposed Pr3Si2C2-assisted liquid-phase sintering of SiC can be potentially used for the fabrication of SiC-based ceramic composites, where a low sintering temperature would inhibit the grain growth of SiC fibers.  相似文献   

4.
A new method of forming silicon carbide–silicon nitride composite foams is presented. These are prepared by immersing a polyurethane foam in a polysilane precursor solution mixed with Si3N4 powder to form a pre-foam followed by heating it in nitrogen at >900°C. X-ray diffraction patterns indicate that a SiC–Si3N4 composite was formed after sintering the ceramic foam at >1500°C. Micrographs show that most of these foams have well-defined open-cell structures and macro-defect free struts. The shrinkage is reduced considerably due to the addition of Si3N4 particles.  相似文献   

5.
Biomorphic porous SiC composite ceramics were produced by chemical vapor infiltration and reaction (CVI-R) technique using paper precursor as template. The thermal conductivity of four samples with different composition and microstructure was investigated: (a) C-template, (b) C-SiC, (c) C-SiC–Si3N4 and (d) SiC coated with a thin layer of TiO2. The SiC–Si3N4 composite ceramic showed enhanced oxidation resistance compared to single phase SiC. However, a key property for the application of these materials at high temperatures is their thermal conductivity. The later was determined experimentally at defined temperatures in the range 293–373 K with a laser flash apparatus. It was found that the thermal conductivity of the porous ceramic composites increases in the following order: C-template < C-SiC < C-SiC–Si3N4 < SiC–TiO2. The results were interpreted in regard to the porosity and the microstructure of the ceramics.  相似文献   

6.
The impact of Si3N4 and SiC additives incorporation in the microstructure and sintering behavior of TiB2-based composites were studied. Three ceramic composites including TiB2–Si3N4, TiB2–SiC, and TiB2–SiC–Si3N4 were manufactured by spark plasma sintering (SPS) at 1950 °C for 8 min under 35 MPa. The acquired ceramics were analyzed by X-ray diffractometry and scanning electron microscopy. In addition, the sintering thermodynamic was investigated using the HSC Chemistry package. X-ray diffraction patterns of the prepared ceramics revealed the in-situ formation of graphite and boron nitride in the final composites initiated from SiC and Si3N4, respectively. The thermodynamic assessments proved the role of liquid phase sintering on the sinterability enhancement of all composite samples. Field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy verified the in-situ formation of both BN and graphite components in the sample containing SiC and Si3N4 additives. Finally, the fractographical investigations clarified the transgranular breakage as the main fracture mode in the TiB2-based ceramics.  相似文献   

7.
Si3N4 ceramic substrates serving as heat dissipater and supporting component are required to have excellent thermal and mechanical properties. To prepare Si3N4 with desirable properties, a novel two-step gas-pressure sintering route including a pre-sintering step followed by a high-temperature sintering step was devised. The effects of pre-sintering temperature (1500 – 1600 °C) on the phase transformation, microstructure, thermal and mechanical properties of the samples were studied. The pre-sintering temperature played an important role in adjusting the Si3N4 particles’ rearrangement and α→β transformation rate. Furthermore, the densification process for the Si3N4 ceramics prepared via the two-step gas-pressure sintering was revealed. After sintered at 1525 °C for 3 h followed by a high-temperature sintering at 1850 °C for another 3 h, the prepared Si3N4 compact with a bimodal microstructure presented the highest thermal conductivity and flexural strength of 79.42 W·m?1·K?1 and 801 MPa, respectively, which holds great application prospects as ceramic substrates.  相似文献   

8.
《Ceramics International》2020,46(17):27175-27183
The fabrication of silicon nitride (Si3N4) ceramics with a high thermal conductivity was investigated by pressureless sintering at 1800 °C for 4 h in a nitrogen atmosphere with MgO and Y2O3 as sintering additives. The phase compositions, relative densities, microstructures, and thermal conductivities of the obtained Si3N4 ceramics were investigated systemically. It was found that at the optimal MgO/Y2O3 ratio of 3/6, the relative density and thermal conductivity of the obtained Si3N4 ceramic doped with 9 wt% sintering aids reached 98.2% and 71.51 W/(m·K), respectively. EDS element mapping showed the distributions of yttrium, magnesium and oxygen elements. The Si3N4 ceramics containing rod-like grains and grain boundaries were fabricated by focused ion beam technique. TEM observations revealed that magnesium existed as an amorphous phase and that yttrium produced a new secondary phase.  相似文献   

9.
《Ceramics International》2022,48(6):8097-8103
ZrB2/SiC, ZrB2/SiC/Si3N4 and ZrB2/SiC/WC ceramic tool materials were prepared by spark plasma sintering technology, and their oxidation resistance was tested at different oxidation temperatures. When the oxidation temperature is 1300 °C, the oxide layer thickness, oxidation weight gain and flexural strength of ZrB2/SiC/Si3N4 ceramic tool material after oxidation are 8.476 μm, 1.436 mg cm?2 and 891.0 MPa, respectively. Compared with ZrB2/SiC ceramic tool materials, the oxide layer thickness and oxidation weight gain are reduced by 8.2% and 11.8%, respectively, and the flexural strength after oxidation is increased by 116.1%. However, the addition of WC significantly reduces the oxidation resistance of the ceramic tool material. A dense oxide film is formed on the surface of ZrB2/SiC/Si3N4 ceramic tool material during oxidation, which effectively prevents oxygen from entering the inside of the material, thereby improving the oxidation resistance of the ceramic tool material.  相似文献   

10.
Electrical resistivities, thermal conductivities and thermal expansion coefficients of hot-pressed ZrB2–SiC, ZrB2–SiC–Si3N4, ZrB2–ZrC–SiC–Si3N4 and HfB2–SiC composites have been evaluated. Effects of Si3N4 and ZrC additions on electrical and thermophysical properties of ZrB2–SiC composite have been investigated. Further, properties of ZrB2–SiC and HfB2–SiC composites have been compared. Electrical resistivities (at 25 °C), thermal conductivities (between 25 and 1300 °C) and thermal expansion coefficients (over 25–1000 °C) have been determined by four-probe method, laser flash method and thermo-mechanical analyzer, respectively. Experimental results have shown reasonable agreement with theoretical predictions. Electrical resistivities of ZrB2-based composites are lower than that of HfB2–SiC composite. Thermal conductivity of ZrB2 increases with addition of SiC, while it decreases on ZrC addition, which is explained considering relative contributions of electrons and phonons to thermal transport. As expected, thermal expansion coefficient of each composite is reduced by SiC additions in 25–200 °C range, while it exceeds theoretical values at higher temperatures.  相似文献   

11.
Porous Si3N4–SiC composite ceramic was fabricated by infiltrating SiC coating with nano-scale crystals into porous β-Si3N4 ceramic via chemical vapor infiltration (CVI). Silica (SiO2) film was formed on the surface of rod-like Si3N4–SiC grains during oxidation at 1100 °C in air. The as-received Si3N4–SiC/SiO2 composite ceramic attains a multi-shell microstructure, and exhibits reduced impedance mismatch, leading to excellent electromagnetic (EM) absorbing properties. The Si3N4–SiC/SiO2 fabricated by oxidation of Si3N4–SiC for 10 h in air can achieve a reflection loss of ?30 dB (>99.9% absorption) at 8.7 GHz when the sample thickness is 3.8 mm. When the sample thickness is 3.5 mm, reflection loss of Si3N4–SiC/SiO2 is lower than ?10 dB (>90% absorption) in the frequency range 8.3–12.4 GHz, the effective absorption bandwidth is 4.1 GHz.  相似文献   

12.
The brittleness of Si3N4 ceramics has always limited its wide application. In this paper, Si3N4 ceramics were prepared based on foam. Combining the unique honeycomb structure of the ceramic foams and the self-toughening mechanism of Si3N4, the strengthening and toughening of Si3N4 ceramics can be further achieved by adjusting the microstructure of Si3N4 ceramic foams. The powder particles are self-assembled by particle-stabilized foaming to form a foam body with a honeycomb structure. It was pretreated at different temperatures (1450–1750°C). The microstructure evolution of foamed ceramics at different pretreatment temperatures and the conversion rate of α-Si3N4 to β-Si3N4 at different pretreatment temperatures were explored. Then the foamed ceramics with different microstructures are hot-press sintered to prepare Si3N4 dense ceramics. The effects of different microstructures of foamed ceramics on the strength and toughness of Si3N4 ceramics were analyzed. The experimental results show that the relative density of Si3N4 ceramics prepared at a particle pretreatment temperature of 1500°C is 97.8%, and its flexural strength and fracture toughness are relatively the highest, which are 1089 ± 60 MPa and 12.9 ± 1.3 MPa m1/2, respectively. Compared with the traditional powder hot-pressing sintering, the improvement is 21% and 33%, respectively. It is shown that this method of preparing Si3N4 ceramics based on foam has the potential to strengthen and toughen Si3N4 ceramics.  相似文献   

13.
A flexible method is presented, which enables the fabrication of porous as well as dense Si3N4/nano-SiC components by using Si3N4 powder and a preceramic polymer (polycarbosilazane) as alternative ceramic forming binder. The SiCN polymer benefits consolidation as well as shaping of the green body and partially fills the interstices between the Si3N4 particles. Cross-linking of the precursor at 300 °C increases the mechanical stability of the green bodies and facilitates near net shape machining. At first, pyrolysis leads to porous ceramic bodies. Finally, subsequent gas pressure sintering results in dense Si3N4/nano-SiC ceramics. Due to the high ceramic yield of the polycarbosilazane binder, the shrinkage during sintering is significantly reduced from 20 to 15 lin.%. Investigations of the sintered ceramics reveal, that the microstructure of the Si3N4 ceramic contains approx. 6 vol.% nano-scaled SiC segregations, which are located both at the grain boundaries and as inclusions in the Si3N4 grains.  相似文献   

14.
《Ceramics International》2022,48(20):30325-30331
High-performance thermal storage ceramics can enable utilization of solar thermal power generation plants. In this work, in situ synthesis was used to prepare mullite thermal storage ceramics. Calcined bauxite, talc, and kaolin were used as raw materials. The effects of additives (e.g., SiC, Si3N4, TiC, and ZrB2) on the density, mechanical durability, phase components, microstructure, and thermal performance of the mullite ceramics were studied. The results showed that the thermal expansion coefficient, thermal conductivity, and heat storage density of the mullite ceramics were affected by their phase components. SiC and Si3N4 did not decompose during the in situ syntheses, but TiC and ZrB2 decomposed. With the addition of 10 wt% SiC, the thermal conductivity improved to 2.72 W (m K)?1 (298 K). The heat storage density of this material was 688 kJ kg?1 (273–1073 K). Consequently, the in situ synthesized mullite thermal storage ceramic with added SiC could be a promising candidate material for a compound latent-sensible heat storage system.  相似文献   

15.
《Ceramics International》2017,43(6):5136-5144
Stoichiometric Tantalum carbide (TaC) ceramics were prepared by reaction spark plasma sintering using 0.333–2.50 mol% Si3N4 as sintering aid. Effects of the Si3N4 addition on densification, microstructure and mechanical properties of the TaC ceramics were investigated. Si3N4 reacted with TaC and tantalum oxides such as Ta2O5 to form a small concentration of tantalum silicides, SiC and SiO2, with significant decrease in oxygen content in the consolidated TaC ceramics. Dense TaC ceramics having relative densities >97% could be obtained at 0.667% Si3N4 addition and above. Average grain size in the consolidated TaC ceramics decreased from 11 µm at 0.333 mol% Si3N4 to 4 µm at 2.50 mol% Si3N4 addition. The Young's modulus, Vickers hardness and flexural strength at room temperature of the TaC ceramic with 2.50 mol% Si3N4 addition was 508 GPa, 15.5 GPa and 605 MPa, respectively. A slight decrease in bending strength was observed at 1200 °C due to oxidation of the samples.  相似文献   

16.
《Ceramics International》2023,49(13):22022-22029
The in-situ controllable synthesis of AlN–SiC solid solution reinforcement in large-sized Al–Si3N4–Al2O3 composite refractory by two-steps nitriding sintering was examined. In the first step, a dynamic Al@AlN structure was constructed in the composite by pre-nitriding at 580 °C. During the subsequent sintering process, it cracked above ∼900 °C, and micronized Al cluster (mixture of droplets and vapor) was extracted out gradually. As a result, multiple AlN mesophases were formed through different reaction paths, including i) initial AlN shell formed by solid Al with N2, ii) reaction of Al cluster with N2, and iii) reaction of Al cluster with Si3N4 from 900 °C to 1500 °C. The Si3N4 precursor serves as both a solid nitrogen source and an active Si source, and the controllable reaction between Al and Si3N4 leading to uniformly distributed AlN and Si mesophases. AlN–SiC solid solution is significantly formed when liquid Si appears. The shell, granule and whisker SiC–AlN solid solution were observed mainly depending on the dynamic AlN mesophase. The SiC–AlN solid solution reinforced Al2O3 materials is a novel promising refractory for large-scale blast furnace lining.  相似文献   

17.
A two-step process has been developed for silicon carbide (SiC) coated polyurethane mimetic SiC preform containing silicon nitride (Si3N4) whiskers. SiC/Si3N4 preforms were prepared by pyrolysis/siliconization treatment at 1600 °C, of powder compacts containing rigid polyurethane, novolac and Si, forming a porous body with in situ grown Si3N4 whiskers. The properties were controlled by varying Si/C mole ratios such as 1–2.5. After densification using a chemical vapour infiltration, the resulting SiC/Si3N4/SiC composites showed excellent oxidation resistance, thermal conductivity of 4.32–6.62 Wm−1 K−1, ablation rate of 2.38 × 10−3  3.24 × 10−3 g cm−2 s and a flexural strength 43.12–55.33 MPa for a final density of 1.39–1.62 gcm−3. The presence of a Si3N4 phase reduced the thermal expansion mismatch resulting in relatively small cracks and well-bonded layers even after ablation testing. This innovative two-step processing can provide opportunities for expanded design for using SiC/Si3N4/SiC composites being lightweight, inexpensive, homogeneous and isotropic for various high temperature applications.  相似文献   

18.
Cf/SiC composites and Si3N4 ceramics are candidate materials for applications in thermal protection system. This paper investigated the joining of Cf/SiC and Si3N4 using Y2O3–Al2O3–SiO2 glass. The reliability of joints was evaluated by thermal shock tests. In this present work, the typical joint structure was Cf/SiC-glass-Si3N4. The results demonstrate that Direct bonding has been identified as the interfacial bonding mechanism at the SiC/glass and glass/Si3N4 interfaces. The maximum shear strength of the Cf/SiC–Si3N4 joint was ~34 MPa, which delivered an effective method to achieve strong, reliable bonding between the dissimilar materials. In addition, after thermal shock for 10 cycles, the residual strength remained ~13 MPa. Bubbles instead of microcracks formed in the glass filler, which was the main factor causing the degradation of the joint performance. It is suggested that improving the high temperature resistance of joining materials is the key to realize the application of this joint structure.  相似文献   

19.
Spark plasma sintering (SPS) is a new sintering method having shorter sintering time and higher densification speed than the traditional sintering methods. In this paper, the Si3N4/TiC ceramic tool material is sintered by SPS. The microstructure and mechanical properties of the material under different sintering parameters are compared. The sintering process of the material is then analyzed, and the best sintering parameters are obtained. Heat the material to 1600°C and keep the temperature for 15 min, then continue to heat to 1700°C and keep the temperature for 10 min, Si3N4/TiC ceramic tool material has high mechanical properties, its bending strength, fracture toughness, and Vickers hardness are 959 MPa, 8.61 MPa·m1/2, and 15.21 GPa, respectively. The scanning electron microscope (SEM) analysis shows that under this condition, the sintering additives and Si3N4/TiC material form the liquid phase, which makes the Si3N4 particles rearrange, dissolve, precipitate, and transform into rod shape β-Si3N4. In addition, under the action of pulse current and external pressure, electric sparks are generated between TiC particles, which allows the material transfer and particle refinement. Therefore, the β-Si3N4 has uniform grain size, and it is vertically and horizontally arranged in the structure, which makes the material have excellent mechanical properties.  相似文献   

20.
《Ceramics International》2021,47(19):27058-27070
The porous SiC–Si3N4 composite ceramics with good EMW absorption properties were prepared by combination of gelcasting and carbothermal reduction. The pre-oxidation of Si3N4 powders significantly improved the rheological properties of slurries (0.06 Pa s at 103.92 s−1) and also suppressed the generation of NH3 and N2 from Si3N4 hydrolysis and reaction between Si3N4 and initiator APS, thereby reducing the pore defects in green bodies and enhancing mechanical properties with a maximum value of 42.88 MPa. With the extension of oxidation time from 0 h to 10 h, the porosity and pore size of porous SiC–Si3N4 composite ceramics increased from approximately 41.86% and 1.0–1.5 μm to 46.33% and ~200 μm due to the production of CO, N2 and gaseous SiO, while the sintering shrinkage decreased from 16.24% to 10.50%. With oxidation time of 2 h, the Si2N2O fibers formed in situ by the reaction of Si3N4 and amorphous SiO2 effectively enhanced the mechanical properties, achieving the highest flexural strength of 129.37 MPa and fracture toughness of 4.25 MPa m1/2. Compared with monolithic Si3N4 ceramics, the electrical conductivity, relative permittivity and dielectric loss were significantly improved by the in-situ introduced PyC from the pyrolysis of three-dimensional network DMAA-MBAM gel in green bodies and the SiC from the carbothermal reduction reaction between PyC and SiO2 and Si3N4. The porous SiC–Si3N4 composite ceramics prepared by the unoxidized Si3N4 powders demonstrated the optimal EMW absorption properties with reflection loss of −22.35 dB at 8.37 GHz and 2 mm thickness, corresponding to the effective bandwidth of 8.20–9.29 GHz, displaying great application potential in EMW absorption fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号