首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper focuses on pump flow rate optimization for forced circulation solar water heating systems with pipes. The system consists of: an array of flat plate solar collectors, two storage tanks for the circulation fluid and water, a heat exchanger, two pumps, and connecting pipes. The storage tanks operate in the fully mixed regime to avoid thermal stratification. The pipes are considered as separated components in the system so as to account for their thermal effects. The objective is to determine optimal flow rates in the primary and secondary loops in order to maximize energy transfer to the circulation fluid storage tank, while reaching user defined temperatures in the water storage tank to increase thermal comfort. A model is developed using mainly the first and second laws of thermodynamics. The model is used to maximize the difference between the energy extracted from the solar collector and the combined sum of the energy extracted by the heat exchanger and corresponding energies used by the pumps in the primary and secondary loops. The objective function maximizes the overall system energy gain whilst minimizing the sum of the energy extracted by the heat exchanger and corresponding pump energy in the secondary loop to conserve stored energy and meet the user requirement of water tank temperatures. A case study is shown to illustrate the effects of the model. When compared to other flow control techniques, in particular the most suitable energy efficient control strategy, the results of this study show a 7.82% increase in the amount of energy extracted. The results also show system thermal losses ranging between 5.54% and 7.34% for the different control strategies due to connecting pipe losses.  相似文献   

2.
In the COVID-19 pandemic, control of airborne virus transmission is exceptionally challenging as it is attached to suspended particles in the air and stays for an extended time. Air contaminated with airborne viruses holds a substantial risk for household transmission. In this study, a novel thermal treatment system is modeled based on porous heating for the decontamination of airborne SARS-Cov-2. The model includes an air heating domain, insulated chamber, buffer tank and heat exchanger. The airborne SARS-Cov-2 is decontaminated when passing through a porous heat pipe and the insulated chamber for an anticipated dwelling period of more than 5 min at 105°C and further stored in a buffer tank for natural cooling. The obligatory decontaminated air is allowed in the residential space under ambient conditions passing through a heat exchanger. The numerical investigation of the porous pipe model at different L/D ratios with altered porosities aims to establish the best-performing porous domain. Besides this, the buffer tank is intended to maintain buffer storage of the treated air and significant natural cooling before passing to the heat exchanger. A solar PV module is proposed to meet the prerequisite energy requirements of the equipped devices.  相似文献   

3.
A number of solar domestic hot water systems and many combined space and water heating systems have heat exchangers placed directly in the storage fluid to charge and/or discharge the tank. Operation of the heat exchanger produces a buoyancy-driven flow within the storage fluid. With a view toward controlling the flow field to increase heat transfer, a cylindrical baffle is inserted in a 350 l cylindrical storage tank. The baffle creates a 40 mm annular gap adjacent to the tank wall. A 10 m-long, 0.3 m2 copper coil heat exchanger is placed in the gap. The effects of the baffle on the transient heat transfer, delivered water temperature, heat exchanger effectiveness, and temperature distribution within the storage fluid are presented during discharge of initially thermally stratified and fully mixed storage tanks. The baffle increases the storage side convective heat transfer to the heat exchanger by 20%. This increase is attributed to higher storage fluid velocities across the heat exchanger.  相似文献   

4.
The thermal advantages by utilizing discharge from different levels in solar storage tanks are investigated, both for a small SDHW system and for a solar combisystem.The investigations showed that it is possible to increase the thermal performance of both types of systems by using two draw-off levels from the solar tanks instead of one draw-off level at a fixed position.The best position of the second draw-off level is in the middle or just above the middle of the tank. For the investigated small SDHW system with a realistic draw off hot water temperature of 40 °C and 45 °C and an auxiliary volume temperature of 50.5 °C the increase of the thermal performance by the second draw-off level is about 6%.For the investigated solar combisystem the increase in thermal performance by using one extra draw-off level, either for the domestic hot water heat exchanger or for the heating system, is about 3%, while an improvement of about 5% is possible by using a second draw-off level both for the domestic hot water heat exchanger and for the heating system.  相似文献   

5.
The present paper deals with an analysis of a forced circulation closed loop solar water heating system; withdrawal of hot water of constant flow rate from a storage tank through a heat exchanger is considered. The effect of flow rate and heat exchanger length on the performance has also been discussed for a typical set of parameters and for a typical cold day in Delhi (26 January 1980).  相似文献   

6.
The European Centre for Public Law in Legraina near Athens in Greece is heated and cooled by a combined solar and geothermal system. The main components of the system are a saline groundwater supplying well, water storage tank for 6 h autonomy, inverter for regulating geothermal flow, heat exchanger, two electrical water source heat pumps placed in cascade, fan coils, air handling units, as well as solar air collectors for air preheating in winter. In addition, hot water is supplied to the building hostel by solar water heaters. Monitoring of the energy system during heating showed excellent energy efficiency and performance.  相似文献   

7.
An analytical and computational model for a solar assisted heat pump heating system with an underground seasonal cylindrical storage tank is developed. The heating system consists of flat plate solar collectors, an underground cylindrical storage tank, a heat pump and a house to be heated during winter season. Analytical solution of transient field problem outside the storage tank is obtained by the application of complex finite Fourier transform and finite integral transform techniques. Three expressions for the heat pump, space heat requirement during the winter season and available solar energy are coupled with the solution of the transient temperature field problem. The analytical solution presented can be utilized to determine the annual variation of water temperature in the cylindrical store, transient earth temperature field surrounding the store and annual periodic performance of the heating system. A computer simulation program is developed to evaluate the annual periodic water and earth temperatures and system performance parameters based on the analytical solution. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
为了获得单罐内盘管换热器最佳的布置方式,利用数值计算的方法研究相同换热器面积不同盘管换热器布置方式对单罐蓄热系统释热性能的影响规律。结果表明,叉排双螺旋盘管换热器的释热性能优于单排盘管换热器,且内盘管高外盘管低(hi=90 mm,ho=174 mm)的布置方式换热器其释热功率、出口温度以及累计释热量最大。  相似文献   

9.
The paper was motivated by the need to extend the utility of a solar water heating system by adjusting a heat exchanger in the hot water tank. An approximate dynamic model, composed of two linear differential equations, is used in an attempt to describe the transient performance of the system. This model is digitized in time, the result being in the form of a set of finite difference equations. Using experimental data the parameters of the model are identified by linear regression. These parameters are computed for various flow rates of the feed water through the heat exchanger in order to obtain a global representation of the system. The theoretical results were tested by simulation and were proved to be sufficiently close to the experimental ones.  相似文献   

10.
R. Yumruta  M. Ünsal 《Energy》2000,25(12):1508
Annual periodic performance of a solar assisted ground-coupled heat pump space heating system with seasonal energy storage in a hemispherical surface tank is investigated using analytical and computational methods. The system investigated employs solar energy collection and dumping into a seasonal surface tank throughout the whole year with extraction of thermal energy from the tank for space heating during the winter season. A computational model is presented in this study for the prediction of the annual periodic transient behaviour of the system under investigation. The present computational model is based on a hybrid analytical–numerical procedure which facilitates determination of the annual variation of water temperature in the surface tank, the amounts of solar thermal energy collected during each month and the annual periodic performance of the solar aided space heating system.  相似文献   

11.
邓寿禄  黄学义 《节能》2009,28(10):39-40
根据油井单体储油罐太阳能加温装置的开发研制情况,设计了油井单体储油罐太阳能加温装置,该装置由太阳能集热器、储能器、热交换器、控制器四部分组成,具有节能、安全、高效、环保等特点,可实现对油井单体储油罐自动加温的功能,避免了使用电加热棒浪费能源、不安全等问题。实践证明,使用该装置能够完全满足对油井单体储油罐的加热要求,具有良好的经济效益和社会效益。  相似文献   

12.
A solar thermal cooling and heating system at Carnegie Mellon University was studied through its design, installation, modeling, and evaluation to deal with the question of how solar energy might most effectively be used in supplying energy for the operation of a building. This solar cooling and heating system incorporates 52 m2 of linear parabolic trough solar collectors; a 16 kW double effect, water-lithium bromide (LiBr) absorption chiller, and a heat recovery heat exchanger with their circulation pumps and control valves. It generates chilled and heated water, dependent on the season, for space cooling and heating. This system is the smallest high temperature solar cooling system in the world. Till now, only this system of the kind has been successfully operated for more than one year. Performance of the system has been tested and the measured data were used to verify system performance models developed in the TRaNsient SYstem Simulation program (TRNSYS). On the basis of the installed solar system, base case performance models were programmed; and then they were modified and extended to investigate measures for improving system performance. The measures included changes in the area and orientation of the solar collectors, the inclusion of thermal storage in the system, changes in the pipe diameter and length, and various system operational control strategies. It was found that this solar thermal system could potentially supply 39% of cooling and 20% of heating energy for this building space in Pittsburgh, PA, if it included a properly sized storage tank and short, low diameter connecting pipes. Guidelines for the design and operation of an efficient and effective solar cooling and heating system for a given building space have been provided.  相似文献   

13.
A computational simulation model for determining the thermal performance of large-scale community solar heating systems with interseasonal heat storage is described. Special attention has been paid to the mathematical formulation of the storage unit. It comprises an uninsulated stratified hot water tank excavated in rock. The storage capacity of the surrounding ground may also be utilized by vertical heat exchanger pipes. Comparisons of theoretical system performance predictions with recent experimental measurements from a full-scale prototype installation are presented and found to be in reasonable agreement. The simulation program is also used to evaluate the thermal performance of various district solar heating system configurations for northern cold climatic conditions (60°N).  相似文献   

14.
This paper presents a transient analysis of a solar water heating system with forced circulation. Two modes of hot water retrieval have been taken into account viz direct from the tank and through a heat exchanger placed in the tank. Analysis has been presented both for constant flow and constant collection temperature modes. Effects of heat exchanger length and time of starting hot water retrieval on the system performance have also been studied. Numerical calculations have been made for a typical cold day (26 January, 1980) at Delhi.  相似文献   

15.
The active solar heating system consists of the following sub-systems: (1) a solar thermal collector area, (2) a water storage tank, (3) a secondary water circuit, (4) a domestic hot water (DHW) preparation system and (5) an air ventilation/heating system. An improved model for the secondary water circuit is proposed and two interconnection schemes for sub-systems (4) and (5) are analyzed. The integrated model was implemented to Pirmasens passive house (Rhineland Palatinate, Germany). Both interconnection schemes show that (almost all) the solar energy collected is not used for space heating but for domestic hot water preparation. The classical water heater operates all over the year and the classical air heater operates mainly during the nights from November to April. The yearly amount of heat required by the DHW preparation system is about 77% of the yearly total heat demand of the passive house and the classical water heater provides about 20% of the yearly heat required by the DHW preparation system. The solar fraction lies between 0.247 in January and 0.930 in August, with a yearly average of 0.597.  相似文献   

16.
In many solar water heating systems, it may prove desirable to use a double-loop system with a heat exchanger between the flat-plate collector and the water storage tank. This approach, using a second fluid which does not freeze in service and which does not lead to corrosion of metals, may be the most convenient way to avoid freezing or corrosion problems in the collector. Because of the heat exchanger, the collector is, however, forced to operate at a higher temperature with a corresponding performance penalty.

A heat exchanger factor has been developed, which makes it possible to determine the collection performance penalty in a straightforward manner. When the heat exchanger is of the counterflow type and is operated so that the mass flowrate-specific heat products of the two streams are equal, the expression becomes very simple, and lends itself to direct optimization of heat exchanger size. Several sample optimization calculations are shown.  相似文献   


17.
This paper presents a general and more realistic model of the transient behaviour of a forced circulation solar water heating system with and without heat exchangers in the collector loop and storage tank. The analysis has been presented for a constant flow mode. The effects of heat exchanger length and various water heating system parameters on its performance have been studied. Numerical calculations have been made for a typical cold day (26 January 1980) at Delhi.  相似文献   

18.
A novel loop heat pipe (LHP) solar water heating system for typical apartment buildings in Beijing was designed to enable effective collection of solar heat, distance transport, and efficient conversion of solar heat into hot water. Taking consideration of the heat balances occurring in various parts of the loop, such as the solar absorber, heat pipe loop, heat exchanger and storage tank, a computer model was developed to investigate the thermal performance of the system. With the specified system structure, the efficiency of the solar system was found to be a function of its operational characteristics - working temperature of the loop heat pipe, water flow rate across the heat exchanger, and external parameters, including ambient temperature, temperature of water across the exchanger and solar radiation. The relationship between the efficiency of the system and these parameters was established, analysed and discussed in detail. The study suggested that the loop heat pipe should be operated at around 72 °C and the water across the heat exchanger should be maintained at 5.1 l/min. Any variation in system structure, i.e., glazing cover and height difference between the absorber and heat exchanger, would lead to different system performance. The glazing covers could be made using either borosilicate or polycarbonate, but borosilicate is to be preferred as it performs better and achieves higher efficiency at higher temperature operation. The height difference between the absorber and heat exchanger in the design was 1.9 m which is an adequate distance causing no constraint to heat pipe heat transfer. These simulation results were validated with the primary testing results.  相似文献   

19.
20.
Abstract

In this paper, a parametric analysis of two solar heating and cooling systems, one using an absorption heat pump and the other one using an adsorption heat pump, was performed. The systems under investigation were designed to satisfy the energy requirements of a residential building for space heating/cooling purposes and domestic hot water production. The system with the absorption heat pump was analyzed upon varying (i) the solar collectors’ area, (ii) the volume of the hot water storage, (iii) the volume of the cold water tank, and (iv) the climatic conditions. The system with the adsorption heat pump was evaluated upon varying (i) the inlet temperature of hot water supplied to the adsorption heat pump, (ii) the volume of the hot water storage, (iii) the volume of the cold water tank, and (iv) the climatic conditions. The analyses were performed using the dynamic simulation software TRNSYS in terms of primary energy consumption, global carbon dioxide equivalent emissions, and operating costs. The performance of the solar heating and cooling systems was compared with those associated with a conventional system from energy, environmental and economic points of views in order to evaluate the potential benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号