首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
本工作主要研究了残余相和晶粒尺寸对碳化硅的抗混酸(HF-HNO_3)腐蚀特性。通过不同的烧结方法(固相烧结、液相烧结、反应烧结)制备出残余相不同的碳化硅材料。结果表明:与液相烧结碳化硅(LPS SiC)和反应烧结碳化硅(RB SiC)相比,固相烧结碳化硅(SSiC)具有更好的腐蚀抗性,这是由于残余相石墨的抗腐蚀性强,以及残余相在材料中形成不能相互联通的岛状结构。通过调节碳化硅的烧结温度,可以影响材料中的晶粒尺寸,研究结果发现相同烧结温度下随着残余相含量的增加,材料腐蚀失重线性增加,对曲线进行线性拟合,其Y轴截距的绝对值代表不含碳的试样在该烧结温度下的腐蚀失重。研究表明随着烧结温度由2100℃升高到2160℃,晶粒尺寸由2μm增加到6μm。此时其Y轴截距的绝对值分别为9.22(2100℃),5.81(2130℃),0.29(2160℃),表明晶粒尺寸的增加有利于提高材料的抗腐蚀能力。  相似文献   

2.
薛松  周杰 《材料科学与工艺》2012,20(2):108-111,116
为了揭示脱脂预氧化对粉末注射成形碳化硅显微组织的影响规律,制定最佳热脱脂工艺,采用空气热脱脂方法对碳化硅制品进行了脱脂(550~950℃).结果表明:随预氧化温度升高烧结制品气孔率先降低后增加,650℃预氧化脱脂坯烧结后气孔率最低;预氧化可以有效促进脱脂坯烧结收缩,但过高的预氧化温度易引起失重增加,650℃预氧化脱脂坯烧结后具有最高的真实密度(3.20 g/cm3),高于未经预氧化直接烧结制品(3.18 g/cm3);烧结后试样由固相碳化硅与晶间液相组成,XRD及TEM能谱分析表明试样内部无残余氧化硅;随预氧化温度的升高烧结试样液相逐渐减少,液相的减少影响了氧化铝与氧化钇的比率,因此烧结试样未见明显YAG衍射峰出现;晶间液相阻碍了碳化硅晶粒间的扩散长大,制品晶粒平均尺寸小于1μm.空气热脱脂可取代传统气氛保护热脱脂,预氧化温度应控制在550~750℃.  相似文献   

3.
研究了碳化硅陶瓷的粉末注射成形工艺,分析了成形工艺及烧结助剂对其显微组织及力学性能的影响,探索了粉末注射成形碳化硅陶瓷的导电特性。以碳化硅为助剂的固相烧结温度为2100℃,脱脂坯烧结后具有最高的真实密度(3.12g/cm3),相对密度达97.5%,烧结后试样由固相碳化硅组成,XRD及TEM能谱分析表明试样内部无残余氧化硅,制品晶粒平均尺寸小于1μm,室温弯曲强度达345MPa。采用直流电流电压测试方法,测定了粉末注射成形方法制得的SiC陶瓷在室温至800℃范围内的直流电导率。  相似文献   

4.
在1400℃和1500℃温度下合成了不同配比的铝酸钙水泥(CMA)。检测结果显示, 当温度升高时镁铝尖晶石的粒径由5 μm生长到15 μm。合成温度达到1400℃时, 镁铝尖晶石晶粒呈团簇状并分布在铝酸钙晶粒周围; 当合成温度升高至1500℃时, 镁铝尖晶石晶粒穿插在铝酸钙晶粒中。另外, 随着水泥中镁铝尖晶石含量的增加, 水泥的凝结时间延长, 同时粘度下降。相应的, 水泥储能模量和流动点的大小分别为0.15 MPa和4.44%。提高镁铝尖晶石相的含量或增大铝酸钙晶粒尺寸会减弱水泥水化时絮凝结构的强度。  相似文献   

5.
Ce:SrHfO3陶瓷因具有高密度和高有效原子序数, 对高能射线具有很强的阻止能力。同时, Ce:SrHfO3陶瓷还具有快衰减和高能量分辨率等优异的闪烁性能, 引起了研究人员的广泛关注。由于传统的烧结方法难以实现非立方结构Ce:SrHfO3陶瓷的透明化, 本研究采用真空长时烧结和短时真空预烧结合热等静压烧结(Hot Isostatic Pressing, HIP)方法制备Ce,Y:SrHfO3陶瓷。以金属氧化物和碳酸盐为原料, 1200 ℃下煅烧8 h可以获得平均粒径为152 nm的纯相Ce,Y:SrHfO3粉体。1800 ℃真空烧结20 h获得平均晶粒尺寸为28.6 μm的不透明的Ce,Y:SrHfO3陶瓷, 而两步烧结法可以制备光学透过率良好的Ce,Y:SrHfO3陶瓷。本研究详细分析了陶瓷致密化过程中微结构的演变, 探究了预烧结温度对Ce,Y:SrHfO3陶瓷密度、显微结构和光学透过率的影响。真空预烧(1500 ℃×2 h)结合HIP后处理(1800 ℃×3 h, 200 MPa Ar)所获得的Ce,Y:SrHfO3陶瓷在800 nm处的最高直线透过率为21.6%, 平均晶粒尺寸仅为3.4 μm。在X射线激发下, Ce,Y:SrHfO3陶瓷在400 nm处产生Ce3+ 5d-4f发射峰, 其XEL积分强度比商用锗酸铋(BGO)晶体高3.3倍, Ce,Y:SrHfO3陶瓷在1 μs门宽下的光产额约为3700 ph/MeV。良好的光学和闪烁性能可以拓宽Ce,Y:SrHfO3陶瓷在闪烁探测领域的应用。  相似文献   

6.
强度、模量和柔顺性作为碳化硅(SiC)纤维重要的力学性能受到纤维直径大小的影响, 而制备工艺中的熔融纺丝过程对纤维直径起决定作用。本工作研究了纺丝温度、纺丝压力和卷绕速度对聚碳硅烷(Polycarbosilane, PCS)原纤维直径的影响, 分析了纺丝过程中纤维断裂的原因, 并初步探究了SiC纤维直径与力学性能的关系。结果表明, 在一定范围内降低纺丝温度、降低纺丝压力和提高卷绕速度均能显著减小原纤维的直径。在连续纺丝的前提下, 最优纺丝工艺下得到的PCS原纤维直径为13.5 μm。随着PCS纤维直径由18.3 μm减小至13.5 μm, SiC纤维直径则由13.8 μm减小至9.5 μm, 而SiC纤维的强度与模量分别由1.7、181 GPa提高至2.9、233 GPa, 强度分布更为集中, 柔顺性得到显著提高。  相似文献   

7.
以采用水热法制备的BaTiO3粉体作为原料, 利用普通烧结法和两步烧结法制备出晶粒尺寸为0.25~10.15 μm的BaTiO3陶瓷, 研究了晶粒尺寸效应对BaTiO3陶瓷的介电、压电以及铁电性能的影响。结果表明: BaTiO3陶瓷的四方相含量随着陶瓷晶粒尺寸的增大而增加; 当晶粒尺寸在1 μm以上时, 室温相对介电常数(ε° )和压电系数(d33)随着晶粒尺寸的减小而增大, 并在晶粒尺寸为1.12 μm时分别达到最大值5628和279 pC/N, 然后两者随着晶粒尺寸的进一步减小而迅速下降。BaTiO3陶瓷的剩余极化强度Pr随晶粒尺寸的增大而提高, 而矫顽场Ec却呈现出相反的趋势。晶粒尺寸对介电性能和压电性能的影响是由于90°电畴尺寸和晶界数量的变化。晶粒的晶体场和晶粒表面钉扎作用的变化影响了电畴, 进而改变电滞回线。  相似文献   

8.
本工作对铈离子掺杂多晶硅酸镥(LSO:Ce)闪烁材料的制备方法进行了系统研究。将LSO:Ce前驱体溶胶喷雾干燥后得到了球形LSO:Ce前驱粉体, 该前驱粉体在1000℃和1100℃的温度下煅烧后分别得到了不同晶型的的单相LSO : Ce球形粉体。显微结构观察显示: 粉体颗粒的平均直径约为2 µm, 是由几十纳米大小的LSO:Ce纳米晶粒堆积而成。A型球形LSO:Ce粉体经1200℃/80MPa的放电等离子体烧结(SPS)后获得了平均晶粒尺寸为1.3 µm, 相对密度高达99.7%的LSO:Ce闪烁陶瓷。由A型球形LSO:Ce粉体压制的素坯在1650℃的空气气氛下烧结4 h后可获得相对密度达98.6%, 平均晶粒尺寸为1.6 μm的LSO:Ce陶瓷。该陶瓷经1650℃/150 MPa的热等静压(HIP)处理1 h后, 获得了相对密度为99.9%的半透明LSO:Ce闪烁陶瓷, 其平均晶粒尺寸为1.7 μm, 晶界干净。该LSO:Ce陶瓷的光产额可达28600 photons/MeV, 发光衰减时间为25 ns。  相似文献   

9.
以两种不同配比Y2O3/Al2O3 (A, 2:3; B, 3:1, 总量15 wt%)为烧结助剂, 通过添加不同质量分数的SiC粉体,反应烧结制备了高强度的氮化硅/碳化硅复相陶瓷。并对材料的相组成、相对密度、显微结构和力学性能进行了分析。结果表明: 在1700℃保温2 h情况下, 烧结助剂A 与B对应的样品中α-Si3N4相全部转化为β-Si3N4; 添加5wt% SiC, 烧结助剂A对应样品的相对密度达到最大值94.8%, 且抗弯强度为521.8 MPa, 相对于不添加SiC样品的抗弯强度(338.7 MPa)提高了约54.1%。SiC能有效改善氮化硅基陶瓷力学性能, 且Si3N4/SiC复相陶瓷断裂以沿晶断裂方式为主。  相似文献   

10.
采用液相混合与固相烧结相结合的方法制备了(Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 (BCTZ) 无铅压电陶瓷, 系统研究了烧结保温时间对其相结构、介电、压电和铁电性能的影响以及电学性能随温度的变化。研究结果表明: 制备的陶瓷样品具有单一的四方钙钛矿结构。当烧结温度为1540℃时, 随着保温时间的延长, 样品晶粒尺寸变大, 居里温度(Tc)升高, 压电性能提高, 电致伸缩性能下降。当保温时间为24 h时, BCTZ陶瓷综合性能最为优异: Tc ~90℃, tanδ < 0.05, kp ~ 0.46, d33 ~ 540 pC/N, Ps ~17 μC/cm2。陶瓷电学性能随温度变化测试结果又表明, BCTZ陶瓷的电学性能具有很强的温度依赖性, 随着温度的升高其电学性能逐渐下降。  相似文献   

11.
固相烧结SiC(SSiC)陶瓷大多数用于结构陶瓷材料, 用于电子和电阻元器件的研究很少。实验以添加不同C含量的致密SSiC陶瓷材料为研究对象, 研究了添加不同C含量SSiC陶瓷的伏安特性、电阻率与电流密度的变化关系及电阻率与温度的变化关系。研究结果表明: SSiC陶瓷表现出明显的非线性电学特性, 其电阻率随着电流的增大而降低; 对于添加3wt% C含量的SSiC陶瓷, 当电场强度超过15.8 V/mm时, 晶界势垒被击穿; 对于添加6wt% C含量的SSiC陶瓷, 当电场强度超过70.7 V/mm时, 晶界势垒被击穿, 它们的电阻率将为晶粒所控制, 电阻率较小; 同时在电场强度1 V/mm条件下, SSiC陶瓷电阻率随着温度的升高而降低, 表现出很好热敏特性, 从常温的106 Ω·cm变化为400℃的5 Ω·cm左右。  相似文献   

12.
研究了碳的添加量为6wt%条件下, 添加碳源的种类及添加比例对制备的无压固相烧结碳化硅陶瓷的微观结构和性能的影响。结果表明: 采用纯无机碳源(碳黑), 制备的碳化硅陶瓷具有较为细小的碳化硅晶粒结构, 但致密度较低; 添加有机碳源(酚醛树脂)时, 随着其裂解碳添加量的增加, 碳化硅的晶粒逐步长大, 碳在材料中的分布更加均匀, 材料的致密度提高, 力学性能增强。当有机碳源裂解碳添加量达3wt%时, 材料的致密度最高, 并具有最大的弹性模量468 GPa, 断裂韧性达4.65 MPa·m1/2。当有机碳源裂解碳添加量大于3wt%时, 碳化硅晶粒发生局部异常长大现象, 材料的弯曲强度与断裂韧性进一步增加。同时, 对材料的热扩散系数随碳源添加种类和比例变化的规律也进行了分析与讨论。  相似文献   

13.
以新型溶胶-凝胶法制备的平均晶粒尺寸为30 nm的铌酸钾钠粉体为原料, 采用放电等离子体烧结工艺, 在烧结温度为900℃, 压力30 MPa, 烧结时间1 min的条件下, 制备得到纯正交相, 相对密度高达99%以上, 平均晶粒尺寸为40 nm的纳米铌酸钾钠陶瓷, 并对该陶瓷的相结构、微观形貌、介电性能和铁电性能进行了研究。结果表明, 与普通微米晶陶瓷不同, 纳米铌酸钾钠陶瓷的室温介电常数仅为341, 并且随温度变化不明显, 表现出明显的介电弛豫现象, 弥散因子γ为1.60, 并具有明显的电滞回线, 矫顽场强度为13.5 kV/cm, 剩余极化为1.5 μC/cm2。尺寸降低所引起的纳米铌酸钾钠陶瓷中晶界相所占的比例增大是其性能变化的主要原因, 并且可以推断, 如果铌酸钾钠陶瓷具有“临界尺寸”, 那么其值应该在40 nm以下。  相似文献   

14.
利用海藻酸钠的离子凝胶过程, 采用溶剂置换结合冷冻干燥的工艺, 成功制备了具有高度有序六方排列的直通孔多孔氧化铝陶瓷, 整个工艺过程及所使用的原料都是环境友好的。研究结果表明, 1500℃烧结2 h样品的孔径尺寸在200 μm左右, 且与固相含量的关系不大, 而孔壁上存在0.3 μm~0.5 μm的小孔。通过控制浆料中氧化铝的固相含量可以对材料的性能进行有效地调控, 研究表明, 随着固相含量从5wt%提高到15wt%, 材料的密度从0.87 g/cm3提高到1.16 g/cm3, 渗透率从2.57×10-11 m2下降到2.16×10-11 m2, 而抗压强度从(18.9±3.2) MPa提高到(44.2±5.4) MPa, 平行孔道方向的热导率从2.1 W/(m·K)提高到3.1 W/(m·K), 而垂直孔道方向的热导率从1.3 W/(m•K)提高到1.7 W/(m·K), 并且平行孔道方向热导率的增加幅度要明显大于垂直孔道方向。  相似文献   

15.
采用溶胶-凝胶法制备Ca0.25(Li0.43Sm0.57)0.75TiO3(CLST)微波介质陶瓷纳米粉体, 研究了ZnO掺杂量和烧结温度对CLST+ xmol% ZnO陶瓷烧结性能和微波介电性能的影响。XRD分析结果表明: 随着ZnO掺杂量x的增加, 陶瓷的晶体结构从正交相变为伪立方相, 并在x≥1.5的样品中出现了杂相。CLST+ xmol% ZnO陶瓷的致密化烧结温度随x的增加而降低, x=1.0的样品的致密化烧结温度比x=0的降低了200 ℃。介电常数εr和频率品质因数Qfx增加和烧结温度的升高具有最优值, 频率温度系数则单调降低。x=1.0的样品在1100 ℃烧结时具有优异的综合性能: ρ = 4.85 g/cm3, εr =102.8, Qf = 5424 GHz, τf = -8.2×10-6/℃。表明ZnO掺杂的CLST陶瓷是一种很有发展潜力的微波介质陶瓷。  相似文献   

16.
基于液相促进固相反应烧结机制, 设计MgO/SrO/La2O3多元复合添加(Zr0.8Sn0.2)TiO4(ZST)体系, 探究复合添加剂对ZST陶瓷的物相组成、微观结构、烧结特性以及高频介电性能等参数的影响。实验结果表明: 陶瓷的主晶相均为ZST相; 适量添加MgO/SrO/La2O3可以有效地降低ZST陶瓷的烧结温度, 获得较优的微波介电性能; 但MgO添加量的增多对材料的综合性能有小幅度的影响; SrO的添加量过大会造成晶粒的不完全生长、瓷体不致密和气孔的增多, 从而导致材料的密度、介电常数和Q×f值的下降; 此外, 添加剂对陶瓷的频率温度系数(τf)影响不大。在复合添加0.2wt%MgO、0.6wt%SrO、1.0wt%La2O3时, 1300℃保温5 h的ZST陶瓷综合性能优异: ρ=5.14 g/cm3, εr=40.11, Q×f=51000 GHz (f=5.61 GHz), τf=-2.85×10-6-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号