首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 609 毫秒
1.
联邦学习(FL)是一种新的分布式机器学习范式,它在保护设备数据隐私的同时打破数据壁垒,从而使各方能在不共享本地数据的前提下协作训练机器学习模型。然而,如何处理不同客户端的非独立同分布(Non-IID)数据仍是FL面临的一个巨大挑战,目前提出的一些解决方案没有利用好本地模型和全局模型的隐含关系,无法简单而高效地解决问题。针对FL中不同客户端数据的Non-IID问题,提出新的FL优化算法——联邦自正则(FedSR)和动态联邦自正则(Dyn-FedSR)。FedSR在每一轮训练过程中引入自正则化惩罚项动态修改本地损失函数,并通过构建本地模型和全局模型的关系来让本地模型靠近聚合丰富知识的全局模型,从而缓解Non-IID数据带来的客户端偏移问题;Dyn-FedSR则在FedSR基础上通过计算本地模型和全局模型的相似度来动态确定自正则项系数。对不同任务进行的大量实验分析表明,FedSR和Dyn-FedSR这两个算法在各种场景下的表现都明显优于联邦平均(FedAvg)算法、联邦近端(FedProx)优化算法和随机控制平均算法(SCAFFOLD)等FL算法,能够实现高效通信,正确率较高,且对不平衡数据...  相似文献   

2.
在传统的联邦学习中,多个客户端的本地模型由其隐私数据独立训练,中心服务器通过聚合本地模型生成共享的全局模型。然而,由于非独立同分布(Non-IID)数据等统计异质性,一个全局模型往往无法适应每个客户端。为了解决这个问题,本文提出一种针对Non-IID数据的基于AP聚类算法的联邦学习聚合算法(APFL)。在APFL中,服务器会根据客户端的数据特征,计算出每个客户端之间的相似度矩阵,再利用AP聚类算法对客户端划分不同的集群,构建多中心框架,为每个客户端计算出适合的个性化模型权重。将本文算法在FMINST数据集和CIFAR10数据集上进行实验,与传统联邦学习FedAvg相比,APFL在FMNIST数据集上提升了1.88个百分点,在CIFAR10数据集上提升了6.08个百分点。实验结果表明,本文所提出的APFL在Non-IID数据上可以提高联邦学习的精度性能。  相似文献   

3.
近年来,将公共安全数据转换为图的形式,通过图神经网络构造节点表示应用于下游任务的方法,充分利用了公共安全数据的实体与关联信息,取得了较好的效果.为了提高模型的有效性,需要大量的高质量数据,但是高质量的数据通常归属于政府、公司和组织,很难通过数据集中的方式使模型学习到有效的事件检测模型.由于各数据拥有方的关注主题与收集时间不同,数据之间存在Non-IID的问题.传统的假设一个全局模型可以适合所有客户端的方法难以解决此类问题.本文提出了基于强化联邦图神经网络的公共安全突发事件检测方法PPSED,各客户端采用多方协作的方式训练个性化的模型来解决本地的突发事件检测任务.设计联邦公共安全突发事件检测模型的本地训练与梯度量化模块,采用基于图采样的minibatch机制的GraphSage构造公共安全突发事件检测本地模型,以减小数据Non-IID的影响,采用梯度量化方法减小梯度通信的消耗.设计基于随机图嵌入的客户端状态感知模块,在保护隐私的同时更好地保留客户端模型有价值的梯度信息.设计强化联邦图神经网络的个性化梯度聚合与量化策略,采用DDPG拟合个性化联邦学习梯度聚合加权策略,并根据权重决定是否对梯度进行量化,对模型的性能与通信压力进行平衡.通过在微博平台收集的公共安全数据集和三个公开的图数据集进行了大量的实验,实验结果表明了提出的方法的有效性.  相似文献   

4.
联邦学习作为一种分布式机器学习框架,客户端可以在不向服务器传输数据的情况下进行全局模型训练,解决了数据分散和数据隐私的问题.联邦学习可以在具有相似数据特征和分布的客户端上很好地工作.但是在很多场景中,客户端数据在分布、数量和概念上的不同,造成了全局模型训练困难.为此,个性化联邦学习作为一种新的联邦学习范式被提出,它旨在通过客户端与服务器的协作来保证客户端个性化模型的有效性.直观来讲,为具有相似数据特征和分布的客户端提供更紧密的协作关系可以有利于个性化模型的构建.然而,由于客户端数据的不可见性,如何细粒度地提取客户端特征,并定义它们之间的协作关系是一个挑战.设计了一个注意力增强元学习网络(attention-enhanced meta-learning network,AMN)来解决这个问题. AMN可以利用客户基础模型参数作为输入特征,训练元学习网络为每个客户端提供一个额外的元模型,自动分析客户特征相似性.基于双层网络设计,有效地实现客户端个性与共性的权衡,提供了包含有益客户信息的融合模型.考虑到训练过程中需要同时训练元学习网络和客户本地基础网络,设计了一种交替训练策略,以端到端的方式...  相似文献   

5.
联邦学习作为一种新兴的分布式机器学习方法,保证了物联网(Internet of things,IoT)设备在数据不出本地的前提下,仅通过传递模型参数来共同维护中央服务器模型,从而达到保护数据隐私安全的目的.传统的联邦学习方法常常在基于设备数据独立同分布的场景下进行联合学习.然而,在实际场景中各设备间的数据样本分布存在差异,使得传统联邦学习方法在非独立同分布(non-independent and identically distributed,Non-IID)的场景下效果不佳.面向Non-IID场景下的混合数据分布问题,提出了新型的联邦自适应交互模型(federated adaptive interaction model,FedAIM)框架,该框架可以同时对不同偏置程度的混合数据进行自适应地交互学习.具体来说,首先,通过引入陆地移动距离(earth mover’s distance,EMD)对各客户端的数据分布进行偏置程度度量(bias measurement),并设计极偏服务器和非极偏服务器2个模块分别处理不同偏置程度的数据分布.其次,提出了基于信息熵的模型参数交互机制,使得Fed...  相似文献   

6.
联邦学习能够在不泄露数据隐私的情况下合作训练全局模型,但这种协作式的训练方式在现实环境下面临参与方数据非独立同分布(Non-IID)的挑战:模型收敛慢、精度降低的问题。许多现有的联邦学习方法仅从全局模型聚合和本地客户端更新中的一个角度进行改进,难免会引发另一角度带来的影响,降低全局模型的质量。提出一种分层持续学习的联邦学习优化方法(FedMas)。FedMas基于分层融合的思想,首先,采用客户端分层策略,利用DBSCAN算法将相似数据分布的客户端划分到不同的层中,每次仅挑选某个层的部分客户端进行训练,避免服务器端全局模型聚合时因数据分布不同产生的权重分歧现象;进一步,由于每个层的数据分布不同,客户端在局部更新时结合持续学习灾难性遗忘的解决方案,有效地融合不同层客户端数据间的差异性,从而保证全局模型的性能。在MNIST和CIFAR-10标准数据集上的实验结果表明,FedMas与FedProx、Scaffold和FedCurv联邦学习算法相比,全局模型测试准确率平均提高0.3~2.2个百分点。  相似文献   

7.
尹春勇  屈锐 《计算机应用》2023,(4):1160-1168
联邦学习(FL)可以有效保护用户的个人数据不被攻击者获得,而差分隐私(DP)则可以实现FL的隐私增强,解决模型训练参数导致的隐私泄露问题。然而,现有的基于DP的FL方法只关注统一的隐私保护预算,而忽略了用户的个性化隐私需求。针对此问题,提出了一种两阶段的基于个性化差分隐私的联邦学习(PDP-FL)算法。在第一阶段,依据用户的隐私偏好对用户隐私进行分级,并添加满足用户隐私偏好的噪声,以实现个性化隐私保护,同时上传隐私偏好对应的隐私等级给中央聚合服务器;在第二阶段,为实现对全局数据的充分保护,采取本地和中心同时保护的策略,并根据用户上传的隐私等级,添加符合全局DP阈值的噪声,以量化全局的隐私保护水平。实验结果表明,在MNIST和CIFAR-10数据集上,PDP-FL算法的分类准确度分别为93.8%~94.5%和43.4%~45.2%,优于基于本地化差分隐私的联邦学习(LDP-Fed)和基于全局差分隐私的联邦学习(GDP-FL),同时满足了个性化隐私保护的需求。  相似文献   

8.
联邦学习作为分布式机器学习框架,在数据不离开本地的情况下,通过共享模型参数达到协作训练的目标,一定程度上解决了隐私保护问题,但其存在中心参数服务器无法应对单点故障、潜在恶意客户端梯度攻击、客户端数据偏态分布导致训练性能低下等问题。将去中心化的区块链技术与联邦学习相结合,提出基于超级账本的集群联邦优化模型。以超级账本作为分布式训练的架构基础,客户端初始化后在本地训练向超级账本传输模型参数及分布信息,通过聚类优化联邦学习模型在客户端数据非独立同分布下的训练表现。在此基础上,随机选举客户端成为领导者,由领导者代替中央服务器的功能,领导者根据分布相似度和余弦相似度聚类并下载模型参数聚合,最后客户端获取聚合模型继续迭代训练。以EMNIST数据集为例,数据非独立同分布情况下该模型平均准确率为79.26%,较FedAvg提高17.26%,在保证准确率的前提下,较集群联邦学习训练至收敛的通信轮次减少36.3%。  相似文献   

9.
针对传统边缘联邦学习(FL)由于客户端资源异质性导致联邦学习模型性能低下等问题,提出面向边缘计算的联邦学习客户端选择机制。该机制综合考虑了客户端的计算资源、通信资源以及数据资源,在联邦学习每轮给定的时间阈值内,使得边缘服务器能够选取尽可能多的客户端数量的同时避免资源不足的客户端,保证参与到联邦学习过程中的客户端的质量,在一定程度上降低了联邦学习的训练成本。该联邦学习客户端选择机制在MNIST和CIFAR-10数据集上与现有的联邦学习客户端选择算法——联邦平均算法(FedCS)和基于多标准的联邦学习客户端选择算法(FedMCCS)进行了对比模拟实验,实验结果表明当所提方法达到FedCS和FedMCCS的最终精度时:在MNIST数据集上时间消耗分别减少了79.55%和72.73%,且最终精度分别提升了2.0%和1.8%;在CIFAR-10数据集上时间消耗分别减少了70.83%和70.83%,且最终精度分别提升了23.6%和27.8%。实验结果验证了提出的客户端选择算法能够有效提升联邦学习的效率。  相似文献   

10.
在联邦学习背景下, 由于行业竞争、隐私保护等壁垒, 用户数据保留在本地, 无法集中在一处训练. 为充分利用用户的数据和算力, 用户可通过中央服务器协同训练模型, 训练得到的公共模型为用户共享, 但公共模型对于不同用户会产生相同输出, 难以适应用户数据是异质的常见情形. 针对该问题, 提出一种基于元学习方法Reptile的新算法, 为用户学习个性化联邦学习模型. Reptile可高效学习多任务的模型初始化参数, 在新任务到来时, 仅需几步梯度下降就能收敛到良好的模型参数. 利用这一优势, 将Reptile与联邦平均(federated averaging, FedAvg)相结合, 用户终端利用Reptile处理多任务并更新参数, 之后中央服务器将用户更新的参数进行平均聚合, 迭代学习更好的模型初始化参数, 最后将其应用于各用户数据后仅需几步梯度下降即可获得个性化模型. 实验中使用模拟数据和真实数据设置了联邦学习场景, 实验表明该算法相比其他算法能够更快收敛, 具有更好的个性化学习能力.  相似文献   

11.
为解决典型联邦学习框架在训练样本数据分布不均衡情况下产生的聚合模型对各个客户端模型不公平的问题,结合区块链的去中心化、不可篡改性以及智能合约的特点,提出基于本地数据特征的公平性联邦学习模型,以实现数据分布差异的客户模型可信安全共享。多个客户端通过区块链上传本地参数以及信用值,利用区块链的共识机制选择信用值最高的区块进行模型聚合,在模型聚合过程中按照节点信用依次进行融合,并根据区块链记录工作节点的本地模型参数作为证据,完成整体模型参数的聚合任务,在此基础上通过广播下传当前聚合模型参数,模型利用区块链的共识机制可降低参数在传输过程中所面临的安全风险。在开源数据集上的实验结果表明,该模型相较FedAvg模型训练精度提高40%,不仅能够优化非独立同分布下的模型训练精度,同时可以防止中间参数传输信息泄露,保证了多个客户端的利益与安全隐私,从而实现具有隐私保护的公平性模型。  相似文献   

12.
联邦学习是一种能够保护数据隐私的机器学习设置,然而高昂的通信成本和客户端的异质性问题阻碍了联邦学习的规模化落地。针对这两个问题,提出一种面向通信成本优化的联邦学习算法。首先,服务器接收来自客户端的生成模型并生成模拟数据;然后,服务器利用模拟数据训练全局模型并将其发送给客户端,客户端利用全局模型进行微调后得到最终模型。所提算法仅需要客户端与服务器之间的一轮通信,并且利用微调客户端模型来解决客户端异质性问题。在客户端数量为20个时,在MNIST和CIFAR-10这两个数据集上进行了实验。结果表明,所提算法能够在保证准确率的前提下,在MNIST数据集上将通信的数据量减少至联邦平均(FedAvg)算法的1/10,在CIFAR-10数据集上将通信数据量减少至FedAvg算法的1/100。  相似文献   

13.
在无线联邦学习(FL)的架构中,用户端与服务器端之间需要持续交换模型参数数据来实现模型的更新,因此会对用户端造成较大的通信开销和功率消耗。目前已经有多种通过数据量化以及数据稀疏化来降低通信开销的方法。为了进一步降低通信开销,提出了一种基于1?bit压缩感知的无线FL算法。在无线FL架构的上行链路中,这种算法首先在用户端记录其本地模型数据的更新参数,包括更新幅值和趋势;接着对幅值和趋势信息进行稀疏化,并确定更新所需的阈值;最后对更新趋势信息进行1?bit压缩感知,从而压缩上行数据。在此基础上,通过设置动态阈值的方法进一步压缩数据大小。在MNIST数据集上的实验结果表明:引入动态阈值的1?bit压缩感知过程能够获得与无损传输过程相同的效果,在FL应用的上行通信过程中能将用户端需要传输的模型参数数据量降低至不采用该方法的标准FL过程的1/25;而在全局模型训练到相同水平时,能将用户上传数据总大小降低至原来的2/11,将传输能耗降低至原来的1/10。  相似文献   

14.
王树芬  张哲  马士尧  陈俞强  伍一 《计算机工程》2022,48(6):107-114+123
联邦学习允许边缘设备或客户端将数据存储在本地来合作训练共享的全局模型。主流联邦学习系统通常基于客户端本地数据有标签这一假设,然而客户端数据一般没有真实标签,且数据可用性和数据异构性是联邦学习系统面临的主要挑战。针对客户端本地数据无标签的场景,设计一种鲁棒的半监督联邦学习系统。利用FedMix方法分析全局模型迭代之间的隐式关系,将在标签数据和无标签数据上学习到的监督模型和无监督模型进行分离学习。采用FedLoss聚合方法缓解客户端之间数据的非独立同分布(non-IID)对全局模型收敛速度和稳定性的影响,根据客户端模型损失函数值动态调整局部模型在全局模型中所占的权重。在CIFAR-10数据集上的实验结果表明,该系统的分类准确率相比于主流联邦学习系统约提升了3个百分点,并且对不同non-IID水平的客户端数据更具鲁棒性。  相似文献   

15.
联邦学习是一种保证数据隐私安全的分布式机器学习方案.与传统的机器学习的可解释性问题类似,如何对联邦学习进行解释是一个新的挑战.文中面向联邦学习方法的分布式与隐私安全性的特性,探讨联邦学习的可视化框架设计.传统的可视化任务需要使用大量的数据,而联邦学习的隐私性决定了其无法获取用户数据.因此,可用的数据主要来自服务器端的训练过程,包括服务器端模型参数和用户训练状态.基于对联邦学习可解释性的挑战的分析,文中综合考虑用户、服务器端和联邦学习模型3个方面设计可视化框架,其包括经典联邦学习模型、数据中心、数据处理和可视分析4个模块.最后,介绍并分析了2个已有的可视化案例,对未来通用的联邦学习可视分析方法提出了展望.  相似文献   

16.
联邦学习能够在边缘设备的协作训练中,保护边缘设备的数据隐私。而在通用联邦学习场景中,联邦学习的参与者通常由异构边缘设备构成,其中资源受限的设备会占用更长的时间,导致联邦学习系统的训练速度下降。现有方案或忽略掉队者,或根据分布式思想将计算任务进行分发,但是分发过程中涉及到原始数据的传递,无法保证数据隐私。为了缓解中小型规模的多异构设备协作训练场景下的掉队者问题,提出了编码联邦学习方案,结合线性编码的数学特性设计了高效调度算法,在确保数据隐私的同时,加速异构系统中联邦学习系统速度。同时,在实际实验平台中完成的实验结果表明,当异构设备之间性能差异较大时,编码联邦学习方案能将掉队者训练时间缩短92.85%。  相似文献   

17.
Pervasive computing promotes the integration of smart devices in our living spaces to develop services providing assistance to people. Such smart devices are increasingly relying on cloud-based Machine Learning, which raises questions in terms of security (data privacy), reliance (latency), and communication costs. In this context, Federated Learning (FL) has been introduced as a new machine learning paradigm enhancing the use of local devices. At the server level, FL aggregates models learned locally on distributed clients to obtain a more general model. In this way, no private data is sent over the network, and the communication cost is reduced. Unfortunately, however, the most popular federated learning algorithms have been shown not to be adapted to some highly heterogeneous pervasive computing environments. In this paper, we propose a new FL algorithm, termed FedDist, which can modify models (here, deep neural network) during training by identifying dissimilarities between neurons among the clients. This permits to account for clients’ specificity without impairing generalization. FedDist evaluated with three state-of-the-art federated learning algorithms on three large heterogeneous mobile Human Activity Recognition datasets. Results have shown the ability of FedDist to adapt to heterogeneous data and the capability of FL to deal with asynchronous situations.  相似文献   

18.
Edge computing is a cloud computing extension where physical computers are installed closer to the device to minimize latency. The task of edge data centers is to include a growing abundance of applications with a small capability in comparison to conventional data centers. Under this framework, Federated Learning was suggested to offer distributed data training strategies by the coordination of many mobile devices for the training of a popular Artificial Intelligence (AI) model without actually revealing the underlying data, which is significantly enhanced in terms of privacy. Federated learning (FL) is a recently developed decentralized profound learning methodology, where customers train their localized neural network models independently using private data, and then combine a global model on the core server together. The models on the edge server use very little time since the edge server is highly calculated. But the amount of time it takes to download data from smartphone users on the edge server has a significant impact on the time it takes to complete a single cycle of FL operations. A machine learning strategic planning system that uses FL in conjunction to minimise model training time and total time utilisation, while recognising mobile appliance energy restrictions, is the focus of this study. To further speed up integration and reduce the amount of data, it implements an optimization agent for the establishment of optimal aggregation policy and asylum architecture with several employees’ shared learners. The main solutions and lessons learnt along with the prospects are discussed. Experiments show that our method is superior in terms of the effective and elastic use of resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号