首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
In real-life domains, learning systems often have to deal with various kinds of imperfections in data such as noise, incompleteness and inexactness. This problem seriously affects the knowledge discovery process, specifically in the case of traditional Machine Learning approaches that exploit simple or constrained knowledge representations and are based on single inference mechanisms. Indeed, this limits their capability of discovering fundamental knowledge in those situations. In order to broaden the investigation and the applicability of machine learning schemes in such particular situations, it is necessary to move on to more expressive representations which require more complex inference mechanisms. However, the applicability of such new and complex inference mechanisms, such as abductive reasoning, strongly relies on a deep background knowledge about the specific application domain. This work aims at automatically discovering the meta-knowledge needed to abduction inference strategy to complete the incoming information in order to handle cases of missing knowledge. Floriana Esposito received the Laurea degree in electronic Physics from the University of Bari, Italy, in 1970. Since 1994 is Full Professor of Computer Science at the University of Bari and Dean of the Faculty of Computer Science from 1997 to 2002. She founded and chairs the Laboratory for Knowledge Acquisition and Machine Learning of the Department of Computer Science. Her research activity started in the field of numerical models and statistical pattern recognition. Then her interests moved to the field of Artificial Intelligence and Machine Learning. The current research concerns the logical and algebraic foundations of numerical and symbolic methods in machine learning with the aim of the integration, the computational models of incremental and multistrategy learning, the revision of logical theories, the knowledge discovery in data bases. Application include document classification and understanding, content based document retrieval, map interpretation and Semantic Web. She is author of more than 270 scientific papers and is in the scientific committees of many international scientific Conferences in the field of Artificial Intelligence and Machine Learning. She co-chaired ICML96, MSL98, ECML-PKDD 2003, IEA-AIE 2005, ISMIS 2006. Stefano Ferilli was born in 1972. After receiving his Laurea degree in Information Science in 1996, he got a Ph.D. in Computer Science at the University of Bari in 2001. Since 2002 he is an Assistant Professor at the Department of Computer Science of the University of Bari. His research interests are centered on Logic and Algebraic Foundations of Machine Learning, Inductive Logic Programming, Theory Revision, Multi-Strategy Learning, Knowledge Representation, Electronic Document Processing and Digital Libraries. He participated in various National and European (ESPRIT and IST) projects concerning these topics, and is a (co-)author of more than 80 papers published on National and International journals, books and conferences/workshops proceedings. Teresa M.A. Basile got the Laurea degree in Computer Science at the University of Bari, Italy (2001). In March 2005 she discussed a Ph.D. thesis in Computer Science at the University of Bari titled “A Multistrategy Framework for First-Order Rules Learning.” Since April 2005, she is a research at the Computer Science Department of the University of Bari working on methods and techniques of machine learning for the Semantic Web. Her research interests concern the investigation of symbolic machine learning techniques, in particular of the cooperation of different inferences strategies in an incremental learning framework, and their application to document classification and understanding based on their semantic. She is author of about 40 papers published on National and International journals and conferences/workshops proceedings and was/is involved in various National and European projects. Nicola Di Mauro got the Laurea degree in Computer Science at the University of Bari, Italy. From 2001 he went on making research on machine learning in the Knowledge Acquisition and Machine Learning Laboratory (LACAM) at the Department of Computer Science, University of Bari. In March 2005 he discussed a Ph.D. thesis in Computer Science at the University of Bari titled “First Order Incremental Theory Refinement” which faces the problem of Incremental Learning in ILP. Since January 2005, he is an assistant professor at the Department of Computer Science, University of Bari. His research activities concern Inductive Logic Programming (ILP), Theory Revision and Incremental Learning, Multistrategy Learning, with application to Automatic Document Processing. On such topics HE is author of about 40 scientific papers accepted for presentation and publication on international and national journals and conference proceedings. He took part to the European projects 6th FP IP-507173 VIKEF (Virtual Information and Knowledge Environment Framework) and IST-1999-20882 COLLATE (Collaboratory for Annotation, Indexing and Retrieval of Digitized Historical Archive Materials), and to various national projects co-funded by the Italian Ministry for the University and Scientific Research.  相似文献   

2.
This paper introduces a model-based approach for minimization of test sets to validate the interaction of human-computer systems. The novelty of the approach is twofold: (i) Test cases generated and selected holistically cover both the behavioral model and the complementary, fault model of the system under test (SUT). (ii) Methods known from state-based conformance testing and graph theory are extended to construct efficient, heuristic search-based algorithms for minimizing the test sets that are constructed in step (i), considering also structural features. Experience shows that the approach can help to considerably save test costs, up to 60% Fevzi Belli received the M.S., Ph.D., and Habilitation degrees in electrical engineering and computer science from the Berlin Technical University. He is presently a Professor of Software Engineering in the Faculty of Computer Science, Electrical Engineering and Mathematics, University of Paderborn, Paderborn, Germany. Prior to this, he headed several projects at a software house in Munich, was a Professor of Computing Science at the Hochschule Bremerhaven and a faculty member of the University of Maryland, European Division. He chaired several international conferences, e.g., ISSRE 1998 and is author and co-author of more than 100 papers published in scientific journals and conference proceedings. His research interests are in testing/fault tolerance/reliability of software and programming techniques. Christof J. Budnik received the MS degree in electrical engineering and computer science in 2001 from the University of Paderborn. In 2002, he joined the Department of Computer Science, Electrical Engineering and Mathematics at the same University where he is currently a faculty member. His research interests are in the areas of software quality, testing of interactive systems and safety-critical user interfaces.  相似文献   

3.
In software testing, developing effective debugging strategies is important to guarantee the reliability of software under testing. A heuristic technique is to cause failure and therefore expose faults. Based on this approach mutation testing has been found very useful technique in detecting faults. However, it suffers from two problems with successfully testing programs: (1) requires extensive computing resources and (2) puts heavy demand on human resources. Later, empirical observations suggest that critical slicing based on Statement Deletion (Sdl) mutation operator has been found the most effective technique in reducing effort and the required computing resources in locating the program faults. The second problem of mutation testing may be solved by automating the program testing with the help of software tools. Our study focuses on determining the effectiveness of the critical slicing technique with the help of the Mothra Mutation Testing System in detecting program faults. This paper presents the results showing the performance of Mothra Mutation Testing System through conducting critical slicing testing on a selected suite of programs. Zuhoor Abdullah Al-Khanjari is an assistant professor in the Computer Science Department at Sultan Qaboos University, Sultanate of Oman. She received her BSc in mathematics and computing from Sultan Qaboos University, MSc and PhD in Computer Science (Software Engineering) from the University of Liverpool, UK. Her research interests include software testing, database management, e-learning, human-computer interaction, programming languages, intelligent search engines, and web data mining and development. ~Currently, she is the coordinator of the software engineering research group in the Department of Computer Science, College of Science, Sultan Qaboos University. She is also coordinating a program to develop e-learning based undergraduate teaching in the Department of Computer Science. Currently she is holding the position of assistant dean for postgraduate studies and research in the College of Science, Sultan Qaboos University, Sultanate of Oman. Martin Woodward is a Senior Fellow in the Computer Science Department at the University of Liverpool in the UK. After obtaining BSc and Ph.D. degrees in mathematics from the University of Nottingham, he was employed by the University of Oxford as a Research Assistant on secondment to the UK Atomic Energy Authority at the Culham Laboratory. He has been at the University of Liverpool for many years and initially worked on the so-called ‘Testbed’ project, helping to develop automated tools for software testing which are now marketed successfully by a commercial organisation. His research interests include software testing techniques, the relationship between formal methods and testing, and software visualisation. He has served as Editor of the journal ‘Software Testing, Verification and Reliability’ for the past thirteen years. Haider Ramadhan is an associate professor in the Computer Science Department at Sultan Qaboos University. He received his BS and MS in Computer Science from University of North Carolina, and the PhD in Computer Science and AI from Sussex University. His research interests include visualization of software, systems, and process, system engineering, human-computer interaction, intelligent search engines, and Web data mining and development. Currently, he is the chairman of the Computer Science Department, College of Science, Sultan Qaboos University, Sultanate of Oman. Swamy Kutti (N. S. Kutti) is an associate professor in the Computer Science Department at Sultan Qaboos University. He received his B.E. in Electronics Engineering from the University of Madras, M.E. in Communication Engineering from Indian Institute of Science (Bangalore), and the MSc in Computer Science from Monash University (Australia) and PhD in Computer Science from Deakin University (Australia). His research interests include Real-Time Programming, Programming Languages, Program Testing and Verification, eLearning, and Distributed Operating Systems.  相似文献   

4.
This approach proposes the creation and management of adaptive learning systems by combining component technology, semantic metadata, and adaptation rules. A component model allows interaction among components that share consistent assumptions about what each provides and each requires of the other. It allows indexing, using, reusing, and coupling of components in different contexts powering adaptation. Our claim is that semantic metadata are required to allow a real reusing and assembling of educational component. Finally, a rule language is used to define strategies to rewrite user query and user model. The former allows searching components developing concepts not appearing in the user query but related with user goals, whereas the last allow inferring user knowledge that is not explicit in user model.John Freddy Duitama received his M.Sc. degree in system engineering from the University of Antioquia -Colombia (South America). He is currently a doctoral candidate in the GET – Institut National des Télécommunications, Evry France. This work is sponsored by the University of Antioquia, where he is assistant professor.His research interest includes semantic web and web-based learning systems, educational metadata and learning objects.Bruno Defude received his Ph.D. in Computer Science from the University of Grenoble (I.N.P.G) in 1986. He is currently Professor in the Department of Computer Science at the GET - Institut National des Télécommunications, Evry France where he leads the SIMBAD project (Semantic Interoperability for MoBile and ADaptive applications).His major field of research interest is databases and semantic web, specifically personalized data access, adaptive systems, metadata, interoperability and semantic Peer-to-peer systems with elearning as a privileged application area.He is a member of ACM SIGMOD.Amel Bouzeghoub received a degree of Ph.D. in Computer Sciences at Pierre et Marie Curie University, France.In 2000, she joined the Computer Sciences Department of GET-INT (Institut National des Telecommunications) at Evry (France) as an associate professor.Her research interests include topics related to Web-based Learning Systems, Semantic Metadata for learning resources, Adaptive Learning Systems and Intelligent Tutoring Systems.Claire Lecocq received an Engineer Degree and a Ph.D. in Computer Sciences respectively in 1994 and 1999. In 1997, she joined the Computer Sciences Department at GET-INT (Institut National des Télécommunications) of Evry, France, as an associate professor. Her first research interests included spatial databases and visual query languages. She is now working on adaptive learning systems, particularly on semantic metadata and user models.  相似文献   

5.
In this paper an evolutionary classifier fusion method inspired by biological evolution is presented to optimize the performance of a face recognition system. Initially, different illumination environments are modeled as multiple contexts using unsupervised learning and then the optimized classifier ensemble is searched for each context using a Genetic Algorithm (GA). For each context, multiple optimized classifiers are searched; each of which are referred to as a context based classifier. An evolutionary framework comprised of a combination of these classifiers is then applied to optimize face recognition as a whole. Evolutionary classifier fusion is compared with the simple adaptive system. Experiments are carried out using the Inha database and FERET database. Experimental results show that the proposed evolutionary classifier fusion method gives superior performance over other methods without using evolutionary fusion. Recommended by Guest Editor Daniel Howard. This work was supported by INHA UNIVERSITY Research Grant. Zhan Yu received the B.E. degree in Software Engineering from Xiamen University, China, in 2008. He is currently a master student in Intelligent Technology Lab, Computer and Information Department, Inha University, Korea. He has research interests in image processing, pattern recognition, computer vision, machine learning and statistical inference and computating. Mi Young Nam received the B.Sc. and M.Sc. degrees in Computer Science from the University of Silla Busan, Korea in 1995 and 2001 respectively and the Ph.D. degree in Computer Science & Engineering from the University of Inha, Korea in 2006. Currently, She is Post-Doctor course in Intelligent Technology Laboratory, Inha University, Korea. She’s research interest includes biometrics, pattern recognition, computer vision, image processing. Suman Sedai received the M.S. degree in Software Engineering from Inha University, China, in 2008. He is currently a Doctoral course in Western Australia University, Australia. He has research interests in image processing, pattern recognition, computer vision, machine learning. Phill Kyu Rhee received the B.S. degree in Electrical Engineering from the Seoul University, Seoul, Korea, the M.S. degree in Computer Science from the East Texas State University, Commerce, TX, and the Ph.D. degree in Computer Science from the University of Louisiana, Lafayette, LA, in 1982, 1986, and 1990 respectively. During 1982–1985 he was working in the System Engineering Research Institute, Seoul, Korea as a research scientist. In 1991 he joined the Electronic and Telecommunication Research Institute, Seoul, Korea, as a Senior Research Staff. Since 1992, he has been an Associate Professor in the Department of Computer Science and Engineering of the Inha University, Incheon, Korea and since 2001, he is a Professor in the same department and university. His current research interests are pattern recognition, machine intelligence, and parallel computer architecture. dr. rhee is a Member of the IEEE Computer Society and KISS (Korea Information Science Society).  相似文献   

6.
This paper presents a novel method for user classification in adaptive systems based on rough classification. Adaptive systems could be used in many areas, for example in a user interface construction or e-Learning environments for learning strategy selection. In this paper the adaptation of web-based system user interface is presented. The goal of rough user classification is to select the most essential attributes and their values that group together users who are very much alike concerning the system logic. In order to group users we exploit their usage data taken from the user model of the adaptive web-based system user interface. We presented three basic problems for attribute selection that generates the following partitions: that is included, that includes and that is the closest to the given partition. Ngoc Thanh Nguyen, Ph.D., D.Sc.: He currently works as an associate professor at the Faculty of Computer Science and Management, Wroclaw University of Technology in Poland. He received his diplomas of M.Sc, Ph.D. and D.Sc. in Computer Science in 1986, 1989 and 2002, respectively. Actually, he is working on intelligent technologies for conflict resolution and inconsistent knowledge processing and e-learning methods. His teaching interests consist of database systems and distributed systems. He is a co-editor of 4 special issues in international journals, author of 3 monographs, editor of one book and about 110 other publications (book chapters, journal and refereed conference papers). He is an associate editor of the following journals: “International Journal of Computer Science & Application”; “Journal of Information Knowledge System Management”; and “International Journal of Knowledge-Based & Intelligent Engineering Systems”. He is a member of societies: ACM, IFIP WG 7.2, ISAI, KES International, and WIC. Janusz Sobecki, Ph.D.: He is an Assistant Professor in Institute of Applied Informatics (IAI) at Wroclaw University of Technology (WUT). He received his M. Sc. in Computer Science from Faculty of Computer Science and Management at WUT in 1986 and Ph.D. in Computer Science from Faculty of Electronics at WUT in 1994. For 1986–1996 he was an Assistant at the Department of Information Systems (DIS) at WUT. For 1988–1996 he was also a head of the laboratory at DIS. For 1996–2004 he was an Assistant Professor in DIS and since fall of 2004 at IAI, both at WUT. His research interests include information retrieval, multimedia information systems, system usability and recommender systems. He is on the editorial board of New Generation Computing and was a co-editor of two journal special issues. He is a member of American Association of Machinery.  相似文献   

7.
Most previous creativity support systems sustain short-term temporal thinking that is separate from users’ daily activities. In this paper, we propose a system to support long-term idea-generation in daily life. The system consists of two subsystems: a management system for problems and ideas calledIdeaManager, and a personal information storage system callediBox. When information is registered in iBox, it searches related problems and ideas in IdeaManager and presents the results. Users then try to generate or enhance ideas for automatically retrieved problems or ideas using registered information as the hint. To evaluate and enhance our system, we carried out a six-week experiment. Based on the results, we give some proposals for future systems. Hirohito Shibata: He received his B.Sci. degree from Kanazawa University in 1992 and his M.Sci. degree from Osaka University in 1994. He was a software engineer at Fuji Xerox Co., Ld from 1994 to 2000. He is currently a doctoral student with Department of Advanced Interdisciplinary Studies, University of Tokyo. His research interests include human-computer interaction and computer support for creative activities. He is a member of Japanese Society for Artificial Intelligence (JSAI) and Japanese Cognitive Science Society (JCSS). Koichi Hori, D.Eng.: He received his B.Eng, M.Eng, and Dr.Eng. degrees in electronic engineering from the University of Tokyo in 1979, 1981, and 1984, respectively. In 1984, he joined National Institute of Japanese Literature, where he developed AI systems for literature studies. Since 1988, he has been with the University of Tokyo. He is currently a professor with Department of Advanced Interdisciplinary Studies, the University of Tokyo. From September 1989 to January 1990, he also held a visiting position at University of Compiegne, France. His current research interests include AI technology for supporting human creative activities, cognitive engineering and Intelligent CAD systems. He is a member of IEEE, ACM, IEICE, IPS J, JSAI, JSSST, and JCSS.  相似文献   

8.
A multimodal virtual reality interface for 3D interaction with VTK   总被引:1,自引:1,他引:1  
The object-oriented visualization Toolkit (VTK) is widely used for scientific visualization. VTK is a visualization library that provides a large number of functions for presenting three-dimensional data. Interaction with the visualized data is controlled with two-dimensional input devices, such as mouse and keyboard. Support for real three-dimensional and multimodal input is non-existent. This paper describes VR-VTK: a multimodal interface to VTK on a virtual environment. Six degree of freedom input devices are used for spatial 3D interaction. They control the 3D widgets that are used to interact with the visualized data. Head tracking is used for camera control. Pedals are used for clutching. Speech input is used for application commands and system control. To address several problems specific for spatial 3D interaction, a number of additional features, such as more complex interaction methods and enhanced depth perception, are discussed. Furthermore, the need for multimodal input to support interaction with the visualization is shown. Two existing VTK applications are ported using VR-VTK to run in a desktop virtual reality system. Informal user experiences are presented. Arjan J. F. Kok is an assistant professor at the Department of Computer Science at the Open University of the Netherlands. He studied Computer Science at the Delft University of Technology, The Netherlands. He received his Ph.D. from the same university. He worked as a Scientist for TNO (Netherlands Organization for Applied Scientific Research) and as assistant professor at the Eindhoven University of Technology before he joined the Open University. His research interests are visualization, virtual reality, and computer graphics. Robert van Liere studied Computer Science at the Delft University of Technology, the Netherlands. He received his Ph.D. with the thesis “Studies in Interactive Scientific Visualization” at the University of Amsterdam. Since 1985, he has worked at CWI, the Center for Mathematics and Computer Science in Amsterdam in which he is the head of CWI’s visualization research group. Since 2004, he holds a part-time position as full professor at the Eindhoven University of Technology. His research interests are in interactive data visualization and virtual reality. He is a member of IEEE.  相似文献   

9.
The Multi-Agent Distributed Goal Satisfaction (MADGS) system facilitates distributed mission planning and execution in complex dynamic environments with a focus on distributed goal planning and satisfaction and mixed-initiative interactions with the human user. By understanding the fundamental technical challenges faced by our commanders on and off the battlefield, we can help ease the burden of decision-making. MADGS lays the foundations for retrieving, analyzing, synthesizing, and disseminating information to commanders. In this paper, we present an overview of the MADGS architecture and discuss the key components that formed our initial prototype and testbed. Eugene Santos, Jr. received the B.S. degree in mathematics and Computer science and the M.S. degree in mathematics (specializing in numerical analysis) from Youngstown State University, Youngstown, OH, in 1985 and 1986, respectively, and the Sc.M. and Ph.D. degrees in computer science from Brown University, Providence, RI, in 1988 and 1992, respectively. He is currently a Professor of Engineering at the Thayer School of Engineering, Dartmouth College, Hanover, NH, and Director of the Distributed Information and Intelligence Analysis Group (DI2AG). Previously, he was faculty at the Air Force Institute of Technology, Wright-Patterson AFB and the University of Connecticut, Storrs, CT. He has over 130 refereed technical publications and specializes in modern statistical and probabilistic methods with applications to intelligent systems, multi-agent systems, uncertain reasoning, planning and optimization, and decision science. Most recently, he has pioneered new research on user and adversarial behavioral modeling. He is an Associate Editor for the IEEE Transactions on Systems, Man, and Cybernetics: Part B and the International Journal of Image and Graphics. Scott DeLoach is currently an Associate Professor in the Department of Computing and Information Sciences at Kansas State University. His current research interests include autonomous cooperative robotics, adaptive multiagent systems, and agent-oriented software engineering. Prior to coming to Kansas State, Dr. DeLoach spent 20 years in the US Air Force, with his last assignment being as an Assistant Professor of Computer Science and Engineering at the Air Force Institute of Technology. Dr. DeLoach received his BS in Computer Engineering from Iowa State University in 1982 and his MS and PhD in Computer Engineering from the Air Force Institute of Technology in 1987 and 1996. Michael T. Cox is a senior scientist in the Intelligent Distributing Computing Department of BBN Technologies, Cambridge, MA. Previous to this position, Dr. Cox was an assistant professor in the Department of Computer Science & Engineering at Wright State University, Dayton, Ohio, where he was the director of Wright State’s Collaboration and Cognition Laboratory. He received his Ph.D. in Computer Science from the Georgia Institute of Technology, Atlanta, in 1996 and his undergraduate from the same in 1986. From 1996 to 1998, he was a postdoctoral fellow in the Computer Science Department at Carnegie Mellon University in Pittsburgh working on the PRODIGY project. His research interests include case-based reasoning, collaborative mixed-initiative planning, intelligent agents, understanding (situation assessment), introspection, and learning. More specifically, he is interested in how goals interact with and influence these broader cognitive processes. His approach to research follows both artificial intelligence and cognitive science directions.  相似文献   

10.
With the growing popularity of the World Wide Web, large volume of user access data has been gathered automatically by Web servers and stored in Web logs. Discovering and understanding user behavior patterns from log files can provide Web personalized recommendation services. In this paper, a novel clustering method is presented for log files called Clustering large Weblog based on Key Path Model (CWKPM), which is based on user browsing key path model, to get user behavior profiles. Compared with the previous Boolean model, key path model considers the major features of users‘ accessing to the Web: ordinal, contiguous and duplicate. Moreover, for clustering, it has fewer dimensions. The analysis and experiments show that CWKPM is an efficient and effective approach for clustering large and high-dimension Web logs.  相似文献   

11.
When a human being is constructing a sentence, he/she chooses words that not only ensure syntactical integrity but also satisfy semantic and in most cases contextual constraints. The system developed here mimics the way humans form sentences. In our approach a sentence is generated as a chain of words satisfying a number of semantic, syntactic and contextual constraints concurrently. This chaining process ensures the compatibility of different components and results in a cohesive and unambiguous sentence. The static lexical and structural objects which contain both semantic and syntactic knowledge interact with dynamically created objects which contain contextual knowledge in order to construct the word and phrase objects which ultimately constitute the sentence.Khosrow Kaikhah is an Assistant Professor of Computer Science at Southwest Texas State University. He has received a PhD in Computer Engineering and an M.S. in Electrical Engineering, both from the University of Rhode Island. His research interests include natural language processing and generation, human-computer interaction, and neural networks.Craig Gandy is a Master of Science candidate in the Department of Computer Science at Southwest Texas State University. He has a B.Sc. degree from the University of Texas at Austin. His research interests include natural langauge processing and generation.  相似文献   

12.
The study on nonlinear control system has received great interest from the international research field of automatic engineering. There are currently some alternative and complementary methods used to predict the behavior of nonlinear systems and design nonlinear control systems. Among them, characteristic modeling (CM) and fuzzy dynamic modeling are two effective methods. However, there are also some deficiencies in dealing with complex nonlinear system. In order to overcome the deficiencies, a novel intelligent modeling method is proposed by combining fuzzy dynamic modeling and characteristic modeling methods. Meanwhile, the proposed method also introduces the low-level learning power of neural network into the fuzzy logic system to implement parameters identification. This novel method is called neuro-fuzzy dynamic characteristic modeling (NFDCM). The neuro-fuzzy dynamic characteristic model based overall fuzzy control law is also discussed. Meanwhile the local adaptive controller is designed through the golden section adaptive control law and feedforward control law. In addition, the stability condition for the proposed closed-loop control system is briefly analyzed. The proposed approach has been shown to be effective via an example. Recommended by Editor Young-Hoon Joo. This work was jointly supported by National Natural Science Foundation of China under Grant 60604010, 90716021, and 90405017 and Foundation of National Laboratory of Space Intelligent Control of China under Grant SIC07010202. Xiong Luo received the Ph.D. degree from Central South University, Changsha, China, in 2004. From 2005 to 2006, he was a Postdoctoral Fellow in the Department of Computer Science and Technology at Tsinghua University. He currently works as an Associate Professor in the Department of Computer Science and Technology, University of Science and Technology Beijing. His research interests include intelligent control for spacecraft, intelligent optimization algorithms, and intelligent robot system. Zengqi Sun received the bachelor degree from Tsinghua University, Beijing, China, in 1966, and the Ph.D. degree from Chalmers University of the Technology, Gothenburg, Sweden, in 1981. He currently works as a Professor in the Department of Computer Science and Technology, Tsinghua University. His research interests include intelligent control of robotics, fuzzy neural networks, and intelligent flight control. Fuchun Sun received the Ph.D. degree from Tsinghua University, Beijing, China, in 1998. From 1998 to 2000, he was a Postdoctoral Fellow in the Department of Automation at Tsinghua University, where he is currently a Professor in the Department of Computer Science and Technology. His research interests include neural-fuzzy systems, variable structure control, networked control systems, and robotics.  相似文献   

13.
Image categorization is undoubtedly one of the most recent and challenging problems faced in Computer Vision. The scientific literature is plenty of methods more or less efficient and dedicated to a specific class of images; further, commercial systems are also going to be advertised in the market. Nowadays, additional data can also be attached to the images, enriching its semantic interpretation beyond the pure appearance. This is the case of geo-location data that contain information about the geographical place where an image has been acquired. This data allow, if not require, a different management of the images, for instance, to the purpose of easy retrieval from a repository, or of identifying the geographical place of an unknown picture, given a geo-referenced image repository. This paper constitutes a first step in this sense, presenting a method for geo-referenced image categorization, and for the recognition of the geographical location of an image without such information available. The solutions presented are based on robust pattern recognition techniques, such as the probabilistic Latent Semantic Analysis, the Mean Shift clustering and the Support Vector Machines. Experiments have been carried out on a couple of geographical image databases: results are actually very promising, opening new interesting challenges and applications in this research field. The article is published in the original. Marco Cristani received the Laurea degree in 2002 and the Ph.D. degree in 2006, both in Computer Science from the University of Verona, Verona, Italy. He was a visiting Ph.D. student at the Computer Vision Lab, Institute for Robotics and Intelligent Systems School of Engineering (IRIS), University of Southern California, Los Angeles, in 2004–2005. He is now an Assistant Professor with the Department of Computer Science, University of Verona, working with the Vision, Image Processing and Sounds (VIPS) Lab. His main research interests include statistical pattern recognition, generative modeling via graphical models, and non-parametric data fusion techniques, with applications on surveillance, segmentation and image and video retrieval. He is the author of several papers in the above subjects and a reviewer for several international conferences and journals. Alessandro Perina received the BD and MS degrees in Information Technologies and Intelligent and Multimedia Systems from the University of Verona, Verona, Italy, in 2004 and 2006, respectively. He is currently a Ph.D. candidate in the Computer Science Department at the University of Verona. His research interests include computer vision, machine learning and pattern recognition. He is a student member of the IEEE. Umberto Castellani is Ricercatore (i.e., Research Assistant) of Department of Computer Science at University of Verona. He received his Dottorato di Ricerca (Ph.D.) in Computer Science from the University of Verona in 2003 working on 3D data modelling and reconstruction. During his Ph.D., he had been Visiting Research Fellow at the Machine Vision Unit of the Edinburgh University, in 2001. In 2007 he has been an Invited Professor for two months at the LASMEA laboratory in Clermont-Ferrand, France. In 2008, he has been Visiting Researcher for two months at the PRIP laboratory of the Michigan State University (USA). His main research interests concern the processing of 3D data coming from different acquisition systems such as 3D models from 3D scanners, acoustic images for the vision in underwater environment, and MRI scans for biomedical applications. The addressed methodologies are focused on the intersections among Machine Learning, Computer Vision and Computer Graphics. Vittorio Murino received the Laurea degree in electronic engineering in 1989 and the Ph.D. degree in electronic engineering and computer science in 1993, both from the University of Genoa, Genoa, Italy. He is a Full Professor with the Department of Computer Science, University of Verona. From 1993 to 1995, he was a Postdoctoral Fellow in the Signal Processing and Understanding Group, Department of Biophysical and electronic Engineering, University of Genoa, where he supervised of research activities on image processing for object recognition and pattern classification in underwater environments. From 1995 to 1998, he was an Assistant Professor of the Department of Mathematics and Computer Science, University of Udine, Udine, Italy. Since 1998, he has been with the University of Verona, where he founded and is responsible for the Vision, Image processing, and Sound (VIPS) Laboratory. He is scientifically responsible for several national and European projects and is an Evaluator for the European Commission of research project proposals related to different scientific programmes and frameworks. His main research interests include computer vision and pattern recognition, probabilistic techniques for image and video processing, and methods for integrating graphics and vision. He is author or co-author of more than 150 papers published in refereed journals and international conferences. Dr. Murino is a referee for several international journals, a member of the technical committees for several conferences (ECCV, ICPR, ICIP), and a member of the editorial board of Pattern Recognition, IEEE Transactions on Systems, Man, and Cybernetics, Pattern Analysis and Applications and Electronic Letters on Computer Vision and Image Analysis (ELCVIA). He was the promotor and Guest Editor off our special issues of Pattern Recognition and is a Fellow of the IAPR.  相似文献   

14.
When dealing with long video data, the task of identifying and indexing all meaningful subintervals that become answers to some queries is infeasible. It is infeasible not only when done by hand but even when done by using latest automatic video indexing techniques. Whether manually or automatically, it is only fragmentary video intervals that we can identify in advance of any database usage. Our goal is to develop a framework for retrieving meaningful intervals from such fragmentarily indexed video data. We propose a set of algebraic operations that includes ourglue join operations, with which we can dynamically synthesize all the intervals that are conceivably relevant to a given query. In most cases, since these operations also produce irrelevant intervals, we also define variousselection operations that are useful in excluding them from the answer set. We also show the algebraic properties possessed by those operations, which establish the basis of an algebraic query optimization. Katsumi Tanaka, D. Eng.: He received his B.E., M.E., and D.Eng. degrees in information science from Kyoto University, in 1974, 1976, and 1981, respectively. Since 1994, he is a professor of the Department of Computer and Systems Engineering and since 1997, he is a professor of the Division of Information and Media Sciences, Graduate School of Science and Technology, Kobe University. His research interests include object-oriented, multimedia and historical databases abd multimedia information systems. He is a member of the ACM, IEEE Computer Society and the Information Processing Society of Japan. Keishi Tajima, D.Sci.: He received his B.S, M.S., and D.S. from the department of information science of University of Tokyo in 1991, 1993, and 1996 respectively. Since 1996, he is a Research Associate in the Department of Computer and Systems Engineering at Kobe University. His research interests include data models for non-traditional database systems and their query languages. He is a member of ACM, ACM SIGMOD, Information Processing Society of Japan (IPSJ), and Japan Society for Software Science and Technology (JSSST). Takashi Sogo, M.Eng.: He received B.E. and M.E. from the Department of Computer and Systems Engineering, Kobe University in 1998 and 2000, respectively. Currently, he is with USAC Systems Co. His research interests include video database systems. Sujeet Pradhan, D.Eng.: He received his BE in Mechanical Engineering from the University of Rajasthan, India in 1988, MS in Instrumentation Engineering in 1995 and Ph.D. in Intelligence Science in 1999 from Kobe University, Japan. Since 1999 May, he is a lecturer of the Department of Computer Science and Mathematics at Kurashiki University of Science and the Arts, Japan. A JSPS (Japan Society for the Promotion of Science) Research Fellow during the period between 1997 and 1999, his research interests include video databases, multimedia authoring, prototypebased languages and semi-structured databases. Dr. Pradhan is a member of Information Processing Society of Japan.  相似文献   

15.
Information service plays a key role in grid system, handles resource discovery and management process. Employing existing information service architectures suffers from poor scalability, long search response time, and large traffic overhead. In this paper, we propose a service club mechanism, called S-Club, for efficient service discovery. In S-Club, an overlay based on existing Grid Information Service (GIS) mesh network of CROWN is built, so that GISs are organized as service clubs. Each club serves for a certain type of service while each GIS may join one or more clubs. S-Club is adopted in our CROWN Grid and the performance of S-Club is evaluated by comprehensive simulations. The results show that S-Club scheme significantly improves search performance and outperforms existing approaches. Chunming Hu is a research staff in the Institute of Advanced Computing Technology at the School of Computer Science and Engineering, Beihang University, Beijing, China. He received his B.E. and M.E. in Department of Computer Science and Engineering in Beihang University. He received the Ph.D. degree in School of Computer Science and Engineering of Beihang University, Beijing, China, 2005. His research interests include peer-to-peer and grid computing; distributed systems and software architectures. Yanmin Zhu is a Ph.D. candidate in the Department of Computer Science, Hong Kong University of Science and Technology. He received his B.S. degree in computer science from Xi’an Jiaotong University, Xi’an, China, in 2002. His research interests include grid computing, peer-to-peer networking, pervasive computing and sensor networks. He is a member of the IEEE and the IEEE Computer Society. Jinpeng Huai is a Professor and Vice President of Beihang University. He serves on the Steering Committee for Advanced Computing Technology Subject, the National High-Tech Program (863) as Chief Scientist. He is a member of the Consulting Committee of the Central Government’s Information Office, and Chairman of the Expert Committee in both the National e-Government Engineering Taskforce and the National e-Government Standard office. Dr. Huai and his colleagues are leading the key projects in e-Science of the National Science Foundation of China (NSFC) and Sino-UK. He has authored over 100 papers. His research interests include middleware, peer-to-peer (P2P), grid computing, trustworthiness and security. Yunhao Liu received his B.S. degree in Automation Department from Tsinghua University, China, in 1995, and an M.A. degree in Beijing Foreign Studies University, China, in 1997, and an M.S. and a Ph.D. degree in computer science and engineering at Michigan State University in 2003 and 2004, respectively. He is now an assistant professor in the Department of Computer Science and Engineering at Hong Kong University of Science and Technology. His research interests include peer-to-peer computing, pervasive computing, distributed systems, network security, grid computing, and high-speed networking. He is a senior member of the IEEE Computer Society. Lionel M. Ni is chair professor and head of the Computer Science and Engineering Department at Hong Kong University of Science and Technology. Lionel M. Ni received the Ph.D. degree in electrical and computer engineering from Purdue University, West Lafayette, Indiana, in 1980. He was a professor of computer science and engineering at Michigan State University from 1981 to 2003, where he received the Distinguished Faculty Award in 1994. His research interests include parallel architectures, distributed systems, high-speed networks, and pervasive computing. A fellow of the IEEE and the IEEE Computer Society, he has chaired many professional conferences and has received a number of awards for authoring outstanding papers.  相似文献   

16.
A logic-based approach to the specification of active database functionality is presented which not only endows active databases with a well-defined and well-understood formal semantics, but also tightly integrates them with deductive databases. The problem of endowing deductive databases with rule-based active behaviour has been addressed in different ways. Typical approaches include accounting for active behaviour by extending the operational semantics of deductive databases, or, conversely, accounting for deductive capabilities by constraining the operational semantics of active databases. The main contribution of the paper is an alternative approach in which a class of active databases is defined whose operational semantics is naturally integrated with the operational semantics of deductive databases without either of them strictly subsuming the other. The approach is demonstrated via the formalization of the syntax and semantics of an active-rule language that can be smoothly incorporated into existing deductive databases, due to the fact that the standard formalization of deductive databases is reused, rather than altered or extended. One distinctive feature of the paper is its use of ahistory, as defined in the Kowalski-Sergot event-calculus, to define event occurrences, database states and actions on these. This has proved to be a suitable foundation for a comprehensive logical account of the concept set underpinning active databases. The paper thus contributes a logical perspective to the ongoing task of developing a formal theory of active databases. Alvaro Adolfo Antunes Fernandes, Ph.D.: He received a B.Sc. in Economics (Rio de Janeiro, 1984), an M.Sc. in Knowledge-Based Systems (Edinburgh, 1990) and a Ph.D. in Computer Science (Heriot-Watt, 1995). He worked as a Research Associate at Heriot-Watt University from December 1990 until December 1995. In January 1996 he joined the Department of Mathematical and Computing Sciences at Goldsmiths College, University of London, as a Lecturer. His current research interests include advanced data- and knowledge-base technology, logic programming, and software engineering. M. Howard Williams, Ph.D., D.Sc.: He obtained his Ph.D. in ionospheric physics and recently a D.Sc. in Computer Science. He was appointed as the first lecturer in Computer Science at Rhodes University in 1970. During the following decade he rose to Professor of Computer Science and in 1980 was appointed as Professor of Computer Science at Heriot-Watt University. From 1980 to 1988 he served as Head of Department and then as director of research until 1992. He is now head of the Database Research Group at Heriot-Watt University. His current research interests include active databases, deductive objectoriented databases, spatial databases, parallel databases and telemedicine. Norman W. Paton, Ph.D.: He received a B.Sc. in Computing Science from the University of Aberdeen in 1986. From 1986 to 1989 he worked as a Research Assistant at the University of Aberdeen, receiving a Ph. D. in 1989. From 1989 to 1995 he was a Lecturer in Computer Science at Heriot-Watt University. Since July 1995, he has been a Senior Lecturer in Department of Computer Science at the University of Manchester. His current research interests include active databases, deductive object-oriented databases, spatial databases and database interfaces.  相似文献   

17.
Privacy-preserving SVM classification   总被引:2,自引:2,他引:0  
Traditional Data Mining and Knowledge Discovery algorithms assume free access to data, either at a centralized location or in federated form. Increasingly, privacy and security concerns restrict this access, thus derailing data mining projects. What is required is distributed knowledge discovery that is sensitive to this problem. The key is to obtain valid results, while providing guarantees on the nondisclosure of data. Support vector machine classification is one of the most widely used classification methodologies in data mining and machine learning. It is based on solid theoretical foundations and has wide practical application. This paper proposes a privacy-preserving solution for support vector machine (SVM) classification, PP-SVM for short. Our solution constructs the global SVM classification model from data distributed at multiple parties, without disclosing the data of each party to others. Solutions are sketched out for data that is vertically, horizontally, or even arbitrarily partitioned. We quantify the security and efficiency of the proposed method, and highlight future challenges. Jaideep Vaidya received the Bachelor’s degree in Computer Engineering from the University of Mumbai. He received the Master’s and the Ph.D. degrees in Computer Science from Purdue University. He is an Assistant Professor in the Management Science and Information Systems Department at Rutgers University. His research interests include data mining and analysis, information security, and privacy. He has received best paper awards for papers in ICDE and SIDKDD. He is a Member of the IEEE Computer Society and the ACM. Hwanjo Yu received the Ph.D. degree in Computer Science in 2004 from the University of Illinois at Urbana-Champaign. He is an Assistant Professor in the Department of Computer Science at the University of Iowa. His research interests include data mining, machine learning, database, and information systems. He is an Associate Editor of Neurocomputing and served on the NSF Panel in 2006. He has served on the program committees of 2005 ACM SAC on Data Mining track, 2005 and 2006 IEEE ICDM, 2006 ACM CIKM, and 2006 SIAM Data Mining. Xiaoqian Jiang received the B.S. degree in Computer Science from Shanghai Maritime University, Shanghai, 2003. He received the M.C.S. degree in Computer Science from the University of Iowa, Iowa City, 2005. Currently, he is pursuing a Ph.D. degree from the School of Computer Science, Carnegie Mellon University. His research interests are computer vision, machine learning, data mining, and privacy protection technologies.  相似文献   

18.
Conventional approaches to image retrieval are based on the assumption that relevant images are physically near the query image in some feature space. This is the basis of the cluster hypothesis. However, semantically related images are often scattered across several visual clusters. Although traditional Content-based Image Retrieval (CBIR) technologies may utilize the information contained in multiple queries (gotten in one step or through a feedback process), this is often only a reformulation of the original query. As a result most of these strategies only get the images in some neighborhood of the original query as the retrieval result. This severely restricts the system performance. Relevance feedback techniques are generally used to mitigate this problem. In this paper, we present a novel approach to relevance feedback which can return semantically related images in different visual clusters by merging the result sets of multiple queries. We also provide experimental results to demonstrate the effectiveness of our approach.Xiangyu Jin received his B.S. and M.E. in Computer Science from the Nanjing University, China, in 1999 and 2002, respectively. He has a visiting student in Microsoft Research Asia (2001) and now is a Ph.D. candidate in the Department of Computer Science at the University of Virginia. His current research interest includes multimedia information retrieval and user interface study. He had the authored or co-authored about 20 publications in these areas.James French is currently a Research Associate Professor in the Department of Computer Science at the University of Virginia. He received a B.A. in Mathematics and M.S. and Ph.D. (1982) degrees in Computer Science, all at the University of Virginia. After several years in industry, he returned to the University of Virginia in 1987 as a Senior Scientist in the Institute for Parallel Computation and joined the Department of Computer Science in 1990. His current research interests include content-based retrieval and information retrieval in widely distributed information systems. He is the editor of five books, and the author or co-author of one book and over 75 papers and book chapters. Professor French is a member of the ACM, the IEEE Computer Society, ASIST, and Sigma Xi. At the time of this work he was on a leave of absence from the University of Virginia serving as a program director at the U.S. National Science Foundation.  相似文献   

19.
The simple least-significant-bit (LSB) substitution technique is the easiest way to embed secret data in the host image. To avoid image degradation of the simple LSB substitution technique, Wang et al. proposed a method using the substitution table to process image hiding. Later, Thien and Lin employed the modulus function to solve the same problem. In this paper, the proposed scheme combines the modulus function and the optimal substitution table to improve the quality of the stego-image. Experimental results show that our method can achieve better quality of the stego-image than Thien and Lin’s method does. The text was submitted by the authors in English. Chin-Shiang Chan received his BS degree in Computer Science in 1999 from the National Cheng Chi University, Taipei, Taiwan and the MS degree in Computer Science and Information Engineering in 2001 from the National Chung Cheng University, ChiaYi, Taiwan. He is currently a Ph.D. student in Computer Science and Information Engineering at the National Chung Cheng University, Chiayi, Taiwan. His research fields are image hiding and image compression. Chin-Chen Chang received his BS degree in applied mathematics in 1977 and his MS degree in computer and decision sciences in 1979, both from the National Tsing Hua University, Hsinchu, Taiwan. He received his Ph.D. in computer engineering in 1982 from the National Chiao Tung University, Hsinchu, Taiwan. During the academic years of 1980–1983, he was on the faculty of the Department of Computer Engineering at the National Chiao Tung University. From 1983–1989, he was on the faculty of the Institute of Applied Mathematics, National Chung Hsing University, Taichung, Taiwan. From 1989 to 2004, he has worked as a professor in the Institute of Computer Science and Information Engineering at National Chung Cheng University, Chiayi, Taiwan. Since 2005, he has worked as a professor in the Department of Information Engineering and Computer Science at Feng Chia University, Taichung, Taiwan. Dr. Chang is a Fellow of IEEE, a Fellow of IEE and a member of the Chinese Language Computer Society, the Chinese Institute of Engineers of the Republic of China, and the Phi Tau Phi Society of the Republic of China. His research interests include computer cryptography, data engineering, and image compression. Yu-Chen Hu received his Ph.D. degree in Computer Science and Information Engineering from the Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan in 1999. Dr. Hu is currently an assistant professor in the Department of Computer Science and Information Engineering, Providence University, Sha-Lu, Taiwan. He is a member of the SPIE society and a member of the IEEE society. He is also a member of the Phi Tau Phi Society of the Republic of China. His research interests include image and data compression, information hiding, and image processing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号