首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
聚砜纳米纤维增韧CFRP的制备及性能   总被引:2,自引:1,他引:1       下载免费PDF全文
介绍了一种聚砜纳米纤维增韧碳纤维/环氧树脂复合材料的新方法。无规取向的纳米纤维通过静电纺丝直接将纳米纤维接收于碳纤维/环氧树脂预浸布上,实现增韧复合材料的目的。探讨了混合溶剂(丙酮、DMAC)配比和聚砜纺丝溶液浓度对纳米纤维直径及分布的影响,测试了不同含量的聚砜纳米纤维增韧复合材料的型层间断裂韧性(GⅡC),并同相等含量的聚砜溶剂法膜增韧复合材料性能进行了比较。在聚砜质量分数分别为1%、3%、5%的情况下,纳米纤维增韧复合材料的GⅡC分别增加54%、130%、177%,高于溶剂法膜增韧的复合材料。微观结构照片表明,纳米纤维增韧复合材料中,相分离后的聚砜小球贯穿于整个复合材料层间,而且呈现无规取向分布的海岛结构。增韧后复合材料的层间剪切强度(ILSS)都有略微的减小,溶剂法膜增韧后ILSS减小更明显。DMTA试验表明,与溶剂法膜相比较,纳米纤维与环氧树脂基体的相容性更好。   相似文献   

2.
Epoxy matrix toughened by polyethersulfone (PES) and polyamide (PA) microparticles was designed and the in-situ interlaminar toughened carbon fiber/epoxy composites were fabricated. Synergistic toughening effect of PES and PA on epoxy matrix was achieved due to semi-IPN structure of PES toughened matrix and uniform dispersion of PA microparticles. Shear-calender orientation of PA microparticles was found during prepreg processing and the microparticles remained on the surface of prepreg due to fiber-bundle filtration. The in-situ formed toughening interlayer of PA microparticles and interfacial bonding between PA and epoxy matrix were detected, which resulted in enhanced fracture toughness, CAI, and transverse flexural strength of the composite based on the PES/PA synergistically toughened matrix. SEM images of fracture morphology of the composite showed evidence of enhanced plastic deformation created by PES and PA, and crack deflection and bridging by PA microparticles.  相似文献   

3.
Novel carbon fiber/epoxy composite toughened by electrospun polysulfone (PSF) nanofibers was prepared to enhance fracture toughness of the composite, and compared the morphology and toughness to those of composite toughened by PSF films prepared by solvent method. Polysulfone nanofibers with the average diameter of 230 nm were directly electrospun onto carbon fiber/epoxy prepregs to toughen the composite. SEM observations of the polysulfone nanofibers toughened composite revealed that polysulfone spheres with uneven sizes presented uniform dispersion through interleaves of the composite, which was different from those of composite toughened by PSF films. Mode I fracture toughness (GIC) of the nanofibers toughened composite was 0.869 kJ/m2 for 5.0 wt.% polysulfone nanofibers content, which was 140% and 280% higher than those of PSF films toughened and untoughened composite due to the uniform distribution of polysulfone spheres.  相似文献   

4.
采用国产CCF800H高强中模碳纤维增强环氧制备了复合材料,研究不同热塑性树脂含量对复合材料张开(Ⅰ)型层间断裂韧度的影响,研究表明:随着热塑组分含量的提高,复合材料的裂纹起始应变能量释放率(GⅠC-init)与裂纹稳态扩展应变能量释放率(GⅠC-prop)都获得了大幅度提升,在增韧组分质量分数大于20%时,增韧聚芳醚酰亚胺粉体可在复合材料层间富集形成层间高韧区,并在复合材料层间形成了由"连续相"和"分散相"组成的层间增韧结构。  相似文献   

5.
In this paper, experimental investigation on the test methods for mode II interlaminar fracture testing of carbon fiber reinforced composites are carried out. Mode II interlaminar fracture testing of unidirectional composite of carbon fiber reinforced epoxy (T800/#3631) are conducted using four kinds of test methods, namely end notched flexure (ENF) test, end loaded split (ELS) test, four-point bend end notched flexure (4ENF) test, and over notched flexure (ONF) test. An analytical model based on a point-friction assumption and classical beam theory is proposed to evaluate the effect of friction between crack faces on the mode II interlaminar fracture toughness in the 4ENF and ONF tests. The analytical model is validated by the comparison of analytical results with previous ones obtained from finite element analysis. Experimental results show that the ENF test gives reliable initiation value of fracture toughness with a small scatter and that the average value of fracture toughness obtained from 4ENF test is about 2% higher than that obtained from the ENF test. The effect of friction in the 4ENF test is much lower than that in the ONF test in which the effect of friction increases with the crack growing. It is concluded that the 4ENF test method is an effective test method for the experimental evaluation of mode II propagation interlaminar fracture toughness of carbon fiber reinforced composites.  相似文献   

6.
Graphene oxide/polyurethane/epoxy (GO/PU/EP) membranes were directly fabricated by functionalization of graphene oxide with epoxy-grafted polyurethane (GO-UE), and the interface correlation and crack propagation mechanisms in GO/PU/EP membranes interlaminar-toughened carbon fiber-reinforced polymer composites were investigated. The functionalized GO-UE with corrugation and scrolling nature of graphene sheets was evenly dispersed in GO/PU/EP membranes below 0.50 wt% loading. Mode I fracture toughness, flexural properties and interlaminar shear strength of GO/PU/EP membranes-toughened composites were enhanced in comparison with untoughened composites and PU/EP membranes-toughened composites, which was ascribed to the multifold interface bonding between the GO-UE layers, epoxy matrix and carbon fiber. Schematic models of multilevel crack propagations were proposed based on different crack extension directions to GO-UE and the morphology evolutions of GO-UE in the interlaminar region and at the carbon fiber interface in toughened composites, which highlighted the toughening mechanisms of crack pinning, crack deflection and separation between GO-UE layers.  相似文献   

7.
为了研究连续单向纤维的层间混杂方式对复合材料力学性能及破坏方式的影响,采用碳纤维-玻璃纤维体积比为1∶1,以拉-挤成型法制备了具有不同层间混杂结构的连续单向纤维增强环氧树脂基复合材料,并研究了不同层间混杂结构的连续单向碳纤维-玻璃纤维增强环氧树脂基复合材料的力学性能及破坏形式。结果表明:具有层间混杂结构的复合材料抗拉强度处于纯碳纤维/环氧树脂复合材料和纯玻璃纤维/环氧树脂复合材料之间,复合材料的拉伸断裂方式为劈裂;具有层间混杂结构的复合材料的层间剪切强度均优于纯碳纤维/环氧树脂复合材料和纯玻璃纤维/环氧树脂复合材料,复合材料的剪切断裂方式为层间断裂。  相似文献   

8.
A novel method was developed to realize the situ accumulation of carbon nanofibers (CNFs) in the carbon fiber reinforced polymer composites (CFRPs) to construct the multi-scale reinforcement for improving the interlaminar properties. In this method, the prepreg was sealed by the nanomicroporous nylon membrane, and the excess resin was extracted from the prepreg by the vacuum-assisted method. It was found that the use of nylon membrane resulted in effective CNFs accumulation, especially in the interlayer by scanning electron microscopy. Short-beam strength tests and the end-notched flexure tests were conducted respectively to evaluate the interlaminar properties of CFRPs under shear loading. The results indicated that the interlaminar shear strength (ILSS) and the Mode II interlaminar fracture toughness (GIIC) of CFRPs made by the filtering membrane-assisted method remarkably increased compared with those prepared without using filtering membrane.  相似文献   

9.
Hybrid nano/microcomposites with a nanoparticle reinforced matrix were developed, manufactured, and tested showing significant enhancements in damage tolerance properties. A woven carbon fiber reinforced polymer composite, with the polymer (epoxy) matrix reinforced with well dispersed carbon nanotubes, was produced using dispersant-and-sonication based methods and a wet lay-up process. Various interlaminar damage tolerance properties of this composite, including static strength, fracture toughness, fatigue life, and crack growth rates were examined experimentally and compared with similarly-processed reference material produced without nanoreinforcement. Significant improvements were obtained in interlaminar shear strength (20%), fracture toughness (180%), shear fatigue life (order of magnitude), and fatigue crack growth rate (factor of 2). Observations by scanning electron microscopy of failed specimens showed significant differences in fracture surface morphology between the two materials, related to the differences in properties and providing context for understanding of the enhancement mechanisms.  相似文献   

10.
采用尼龙无纺布(PNF)作为结构化增韧层,制备了PNF层间增韧改性的U3160碳纤维增强3266环氧树脂(U3160-PNF/3266)复合材料,研究了U3160-PNF/3266复合材料的面内力学性能及湿热老化后的力学性能变化,并分析了复合材料湿热老化前后的层间形貌。结果表明:PNF增韧层的引入并未导致复合材料面内力学性能的下降,与未增韧的U3160碳纤维增强3266环氧树脂(U3160/3266)复合材料相比,增韧复合材料U3160-PNF/3266的90°拉伸性能有所提高。而湿热老化处理对U3160-PNF/3266复合材料的基体和界面性能影响相对明显,尤其是尼龙纤维与树脂基体之间的界面结合性能,湿热老化处理后增韧复合材料的90°压缩和层间剪切性能保持率均明显低于未增韧复合材料的。  相似文献   

11.
Carbon nanotubes (CNT) in their various forms have great potential for use in the development of multifunctional multiscale laminated composites due to their unique geometry and properties. Recent advancements in the development of CNT hierarchical composites have mostly focused on multi-walled carbon nanotubes (MWCNT). In this work, single-walled carbon nanotubes (SWCNT) were used to develop nano-modified carbon fiber/epoxy laminates. A functionalization technique based on reduced SWCNT was employed to improve dispersion and epoxy resin-nanotube interaction. A commercial prepregging unit was then used to impregnate unidirectional carbon fiber tape with a modified epoxy system containing 0.1 wt% functionalized SWCNT. Impact and compression-after-impact (CAI) tests, Mode I interlaminar fracture toughness and Mode II interlaminar fracture toughness tests were performed on laminates with and without SWCNT. It was found that incorporation of 0.1 wt% of SWCNT resulted in a 5% reduction of the area of impact damage, a 3.5% increase in CAI strength, a 13% increase in Mode I fracture toughness, and 28% increase in Mode II interlaminar fracture toughness. A comparison between the results of this work and literature results on MWCNT-modified laminated composites suggests that SWCNT, at similar loadings, are more effective in enhancing the mechanical performance of traditional laminated composites.  相似文献   

12.
结构化增韧层增韧RTM复合材料性能   总被引:1,自引:0,他引:1       下载免费PDF全文
从复合材料离位增韧思想出发,选用具有高孔隙率的尼龙无纺布(PNF)作为结构化增韧层,采用RTM工艺制备了PNF层间增韧改性的U3160碳纤维增强环氧3266树脂基复合材料(U3160-PNF/3266),并研究了其韧性相关性能和增韧机制。结果表明:U3160-PNF/3266复合材料层间仍保持其原有的结构形式,同时与层间树脂相互贯穿形成了一种非反应诱导相分离的双连续结构,并且这种双连续结构表现出显著的增韧效果。U3160-PNF/3266复合材料的Ⅰ型层间断裂韧性和Ⅱ型层间断裂韧性分别提高了1.1倍和1.4倍,冲击后压缩强度由212MPa提高到281MPa。  相似文献   

13.
Polyetherketone cardo (PEK-C) nanofibres were produced by an electrospinning technique and directly deposited on carbon fabric to improve the interlaminar fracture toughness of carbon/epoxy composites. The influences of nanofibre diameter and interlayer thickness on the Mode I delamination fracture toughness, flexure property and thermal mechanical properties of the resultant composites were examined. Considerably enhanced interlaminar fracture toughness has been achieved by interleaving PEK-C nanofibres with the weight loading as low as 0.4% (based on weight of the composite). Finer nanofibres result in more stable crack propagation and better mechanical performance under flexure loading. Composites modified by finer nanofibres maintained the glass transition temperature (Tg) of the cured resin. Increasing nanofibre interlayer thickness improved the fracture toughness but compromised the flexure performance. The Tg of the cured resin deteriorated after the thickness increased to a certain extent.  相似文献   

14.
Herein we report the development and evaluation of hybrid multi-scale epoxy composite made of conventional carbon fiber fabrics with interlaminar regions containing mats of electrospun carbon nanofibers (ECNs). The results indicated that (1) the interlaminar shear strength and flexural properties of hybrid multi-scale composite were substantially higher than those of control/comparison composite without ECNs; in particular, the interlaminar shear strength was higher by ∼86%; and (2) the electrical conductivities in both in-plane and out-of-plane directions were enhanced through incorporation of ECNs, while the enhancement of out-of-plane conductivity (∼150%) was much larger than that of in-plane conductivity (∼20%). To validate the data reduction procedure, a new shear stress formula was formulated for composite laminates, which took into account the effect of layup and inter-layers. The study suggested that ECNs could be utilized for the development of high-performance composites, particularly with the improved out-of-plan properties (e.g., interlaminar shear strength).  相似文献   

15.
In this paper, stacked-cup carbon nanofibers (CNF) were dispersed in the matrix phase of carbon-fiber-reinforced composites based on a high-performance epoxy system with and without modification by an elastomeric triblock copolymer (TCP) for increased toughness. The addition of the TCP provided an enhancement in toughness at the cost of a slight degradation in modulus and strength. The CNFs, on the other hand, provided significantly enhanced strength and stiffness in matrix-dominated configurations, including tension of quasi-isotropic composites and short beam shear strength of both quasi-isotropic and unidirectional composites. Scanning electron microscopy revealed enhanced adhesion between the matrix and carbon fibers with the addition of either TCP or CNFs. However, CNF agglomeration in the studied systems partially offset the energy dissipation processes brought about by the nanofibers, thereby limiting interlaminar fracture toughness enhancements by CNF addition. These results show good promise for CNFs as low-cost reinforcement for composites while offering insight into the codependent morphologies of multi-scale phases and their influence over bulk properties.  相似文献   

16.
An investigation is described concerning the interaction of propagating interlaminar cracks with embedded strips of interleaved materials in E-glass fibre reinforced epoxy composites. The approach deploys interlayer strips of a thermoplastic film, thermoplastic particles, chopped fibres, glass/epoxy prepreg, thermoset adhesive film and thermoset adhesive particles ahead of the crack path on mid-plane of Double Cantilever Beam (DCB) specimens. During these mode I tests, the interlayers were observed to confer an apparent increase in the toughness of the host material. The crack arrest performance of individual inclusion types are discussed and the underlying mechanisms for energy absorption and the behaviour of the crack at the interaction point of the interleave edge were analysed using scanning electron microscopy.  相似文献   

17.
The reinforcement effects of two nanofillers, i.e., multi-walled carbon nanotube (MWCNT) and vapor grown carbon fiber (VGCF), which are used at the interface of conventional CFRP laminates, and in epoxy bulk composites, have been investigated. When using the two nanofillers at the interface between two conventional CFRP sublaminates, the Mode-I interlaminar tensile strength and fracture toughness of CFRP laminates are improved significantly. The performance of VGCF is better than that of MWCNT in this case. For epoxy bulk composites, the two nanofillers play a similar role of good reinforcement in Young’s modulus and tensile strength. However, the Mode-I fracture toughness of epoxy/MWCNT is much better than that of epoxy/VGCF.  相似文献   

18.
Double-cantilever-beam tests were applied to investigate the mode I interlaminar fracture toughness of carbon fibre/epoxy laminates, in which the epoxy matrices were incorporated with rubber and silica nano-particles, either singly or jointly. It is shown that the toughness is improved owing to the presence of these nano-particles although nano-rubber is more effective than nano-silica. Further, by keeping the total particle weight percentage constant in epoxies (e.g., at 8 and 12 wt.%) filled with equal amount of nano-silica and nano-rubber, the interlaminar toughness values of the hybrid laminates are always higher than those with nano-silica filled epoxies but lower than those with nano-rubber filled matrices. Scanning electron microscopy examination of the delaminated surfaces of composite laminates filled with nano-particles revealed that cavitation of nano-rubber particles/void growth and debonding of nano-silica from epoxy matrix are responsible for the improved interlaminar toughness observed. It is also shown that the bulk toughness of nano-particle filled epoxies cannot be fully transferred to the interlaminar toughness of composite laminates, being limited by the constraint effect imposed by the carbon fibres. Finally, the role of fibre-bridging on the delaminated crack and hence delamination toughness is discussed.  相似文献   

19.
针对碳纤维增强环氧树脂(CF/EP)复合材料层间断裂韧性进行研究,通过在CF/EP复合材料层间添加四种无机纳米粒子和三种热塑性颗粒对其进行II型层间断裂韧性(GIIC)研究,选择工艺性和增韧性效果好的两种无机纳米粒子和热塑性颗粒进行协同增韧研究。结果表明,CF/EP复合材料的GIIC在适当的无机纳米粒子含量下都得到提高,这主要是由于无机纳米粒子在层间形成了有效吸收断裂能的微结构,纳米羟基氧化铝(AlOOH)的工艺性及增韧性等综合性能最好,AlOOH质量分数为1wt%时,CF/EP复合材料的GIIC达到931 J/m2,提高了29.3%;热塑性颗粒中,改性聚芳醚酮颗粒(PAEK)的综合性能最好,添加10wt% PAEK,CF/EP复合材料的GIIC可以提高32%,这是由于预制在层间的热塑性颗粒随着基体流动而得到扩散,形成了独特的跨层间连续结构,从而使裂纹扩展的阻力增加,有效提高了CF/EP复合材料的GIIC;10wt%PAEK和1wt%AlOOH共同增韧CF/EP复合材料的GIIC达到1 368 J/m2,相对于未增韧的CF/EP复合材料提高了90%,增韧效果比PAEK和AlOOH对CF/EP复合材料的增韧效果之和大,这表明,PAEK和AlOOH同时加入CF/EP复合材料层间,对CF/EP复合材料具有协同增韧效应。   相似文献   

20.
郭壮壮  徐武  余音 《复合材料学报》2019,36(5):1210-1215
目前ASTM复合材料Ⅰ型层间断裂韧性测试标准需不断观测裂纹扩展长度。然而在低温环境下,裂纹扩展长度不易测量且过程繁琐。为克服这一缺陷,本文采用双柔度法测试复合材料低温环境下Ⅰ型层间断裂韧性,该方法的步骤与ASTM标准基本相同,但不需观测裂纹扩展长度便能获得低温下Ⅰ型层间断裂韧性。为了验证该方法的可靠性和精度,采用5件碳纤维增强环氧树脂基复合材料双悬臂梁(DCB)试样在-10℃环境下进行Ⅰ型层间裂纹扩展实验,应用ASTM标准所推荐的三种方法及本文的双柔度法进行数据处理获得复合材料Ⅰ型层间断裂韧性。结果表明:ASTM标准的三种方法与双柔度法得到的Ⅰ型层间断裂韧性结果一致,相对差别小于5%,而本文的双柔度法不需测量裂纹扩展长度,因此更简单,为测试低温环境下Ⅰ型层间断裂韧性提供了一种准确、简单的新方法。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号