首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 416 毫秒
1.
通过自然沉淀和混凝沉淀试验,研究了沉淀池排泥水性质和上清液回用对水质的影响,考察了南方地区排泥水回用的安全性和可行性。结果表明,沉淀池排泥水沉降性能良好,自然沉淀30 min后上清液水质明显改善。排泥水上清液回用提高了对COD_(Mn)和DOC的去除效果,对浊度和UV254小分子有机物无不利影响;沉后水锰、铝、镍、铊重金属含量均在标准范围内,但回流比较大时存在一定的锰超标风险。排泥水经自然沉淀后回用(回用比≤10%)具有良好的水质安全性,可实现节能减排和环境保护双重目标。  相似文献   

2.
采用外压浸入式中空纤维超滤膜处理排泥水重力浓缩上清液。试验结果表明,当温度从16℃下降到2℃时,TMP从0.032MPa上升到0.055MPa。排泥水经6h重力浓缩后,上清液浊度为9.99~80.33NTU,CODMn为5.36~18.64mg/L;超滤膜出水浊度为0.08~0.11NTU,CODMn小于3mg/L,颗粒数小于1个/mL。在排泥水上清液水质波动较大情况下,经超滤处理后,出水水质优于常规处理工艺出水,加氯后可直接进入清水池。  相似文献   

3.
北方某大型水厂二期改造工程采用法国OTV的Actiflo高效沉淀工艺,改造后存在滤池滤程缩短、排泥水量大幅增加;部分排泥水外排影响环境等问题。通过对该工艺采用中间加药技术,增加排泥回流管等措施进行改进,沉淀池出水浊度稳定在1NTU左右,浊度去除率平均提高10%;同时,微砂投加量平均节省17.4%;滤池过滤周期提高到近50小时左右;排泥水量为调整前的25%,达到水厂工艺控制可接受的范围内。  相似文献   

4.
以净水厂排泥水为研究对象,考察了斜管沉淀池对排泥水的处理效果。结果表明,随着进泥负荷的不断增大,斜管沉淀池出水的上清液浊度和CODMn含量都逐渐升高,阴离子聚丙烯酰胺或聚合氯化铝与聚丙烯酰胺的联合投加都可以改善排泥水的沉降性能,且只要聚丙烯酰胺的投加量大于2 mg/L,就可以形成较大且密实的矾花;投加聚丙烯酰胺药剂后,可应对由于净水工艺进行沉淀池冲洗后排泥水性质的恶化,改善排泥水的沉降性能,降低出水浊度,提高出泥浓度。  相似文献   

5.
《供水技术》2021,15(4)
取净水厂不同处理单元的排泥水进行阴离子聚丙烯酰胺(PAM)投加的小试,并在污泥泵房污泥浓缩及排放环节进行生产性验证。小试结果表明,随着阴离子PAM投加量的增大,排泥水沉降效果提升,含水率有所降低。生产性验证结果表明,污泥泵房储泥池曝气后的泥水中投加0.2 mg/L阴离子PAM溶液后,沉降效果明显变好,沉降速度加快。回流至调节池的上清液浊度降低,作为生产用原水的水质改善,可适当降低后续处理成本。排泥管内污泥的浓缩性提高,可以考虑适当缩短每个排泥管的排泥时间,减少排泥水量,实现节能减排。  相似文献   

6.
以西安市某自来水厂的沉淀池排泥水为处理对象,采用循环造粒流化床技术先进行工艺参数优化中试,再进行生产性试验研究。中试结果表明,循环造粒流化床的运行稳定性较高,即使进水浊度在200~800 NTU范围内变化或进水上升流速在25~70 cm/min之间变化,出水浊度仍可稳定保持在10 NTU以下;工艺优化参数如下:上升流速为70 cm/min,搅拌转速为5~8 r/min,助凝剂聚丙烯酰胺(PAM)投加量为4~5 mg/L。在中试的基础上进行生产性试验,出水浊度始终稳定在10 NTU以下,最佳间歇排泥间隔为4 h,出泥含水率为95.8%,处理成本为0.1元/m^3。中试及生产性试验结果表明,采用循环造粒流化床处理排泥水,具有出水水质好、抗冲击负荷能力强、污泥浓缩效果好、处理成本低等优点。  相似文献   

7.
为了总结长江上游高浊度水给水工程设计经验和修编《高浊度水给水设计规范》。对川渝两地数个城市供水企业进行了调研。长江上游干流f含金沙江)及其支流的浊度每年有数十天在1000NTU以上.有数天在3000NTU以上,并有上10000NTU的情况,仍属多沙高浊度水体。中国市政工程西南设计研究总院经过五十余年高浊度水给水工程设计、总结和研究.提出“沉淀分级效应”理论.逐渐形成采用多级混凝沉淀处理多沙高浊度水工艺技术。近20年设计的高浊度水给水工程基本上都采用两级混凝沉淀工艺流程.运行效果良好。本文还对多沙高浊度水给水工程的取水、絮凝、沉淀和排泥的形式作了介绍。  相似文献   

8.
本文研究了浸没式平板陶瓷膜对给水厂高浊度排泥水的处理效能。试验所用排泥水浊度范围在500-5500 NTU,平板陶瓷膜孔径平均值为60nm。结果表明,平板陶瓷膜超滤技术能够有效去除排泥水浊度,出水浊度达到0.2 NTU以下;但是,对于溶解性的COD和氨氮处理效果不明显。适宜的陶瓷膜通量为60 L/(m2·h),排泥水起始浊度为2000NTU左右,曝气量为150 L/min,过滤周期能够达到5小时以上。清水反冲洗能够使陶瓷膜通量恢复,膜污染主要是可逆性质的,主要膜污染物质是190-250 nm粒径的颗粒物。平板陶瓷膜安装简单,操作容易,耐酸碱清洗,寿命长,在给水厂排泥水处理和回收领域具有广阔的应用前景。  相似文献   

9.
南方某自来水厂原来的水处理工艺为混凝、沉淀、过滤、消毒,在混凝前投加石灰作为酸碱调节剂调节pH值,由于取水源水质偏酸性,加上工艺自身原因,导致出厂水pH一直较低,易导致管网被腐蚀。为提高水质pH,该自来水厂改造工艺,在原有的工艺基础上增添后投加碱工艺,即在待滤水后投加液体氢氧化钠。此文通过实验与实际运用中研究改造工艺的必要性和改造后工艺的运行情况和运行成本。结果说明,若不断增加石灰投加量会导致水质余铝升高,必需在出厂水前再次补加液体氢氧化钠;改造工艺后系统运行情况正常,出厂水氨氮都0.02mg/L,浊度控制在0.50NTU以下,pH值能达到7.0~7.4范围,工艺调节pH更加灵活,并且可以节约成本。  相似文献   

10.
通过混凝试验,以沉降比、上清液浊度、氨氮和CODMn作为考察排泥水沉降浓缩处理性能的指标,研究了pH值调质对污泥沉降性能的影响。结果表明:在弱酸性(pH=6.0~6.8)条件下,使用阴离子型聚丙烯酰胺(PAM)能有效地改善污泥沉降浓缩后的上清液水质;进行pH值调质时,投酸量与排泥水的浓度有关;运行中应严格控制pH值的调节,pH<5时不利于沉降,pH>7时调质效果不明显。  相似文献   

11.
针对常规工艺对连云港地区受污染水源水处理效果有限的问题,进行了中置式高密度沉淀池中试研究。结果表明,增大污泥回流比和PAC投加量能够有效降低出水浊度;投加PAM可以提高回流污泥浓度,降低混凝剂用量,改善絮凝效果。当回流比为0.040,PAM投加量为0.08mg/L,PAC投加量为25 mg/L时,出水浊度为1.0 NTU。  相似文献   

12.
针对天津市凌庄水厂斜管沉淀池出水浊度较高的问题,对斜管沉淀池进行技术改造。通过在斜管沉淀池排泥车上加装双侧表面冲洗设施,使沉淀池出水浊度明显下降,有效改善了出水水质。同时,节省了相当数量的水厂自用水和人工工时。  相似文献   

13.
平流沉淀池是净水工艺中常见的工艺单元,其排泥设施主要包括桁架式刮吸泥机和穿孔排泥管,因刮泥机和排泥管独立运行,常导致平流沉淀池排泥不彻底、积泥等问题。针对该问题,提出了一种基于红外反射技术的平流沉淀池排泥系统改造方案,可实现桁架式刮吸泥机与排泥角阀联动控制,使刮泥和排泥过程精准关联,改善排泥效果。排泥系统经改造后,沉淀池出水水质提升,浊度降低53%~60%;排泥水量减少,自用水率降低约16%;排泥系统电耗大幅缩减,同比降低47%~53%。该改造方案投资仅2.8万元,在提升工艺出水水质的同时实现节能降耗,可为存在类似问题的水厂提供借鉴。  相似文献   

14.
研究了采用高锰酸钾预氧化与污泥回流联用工艺对低浊微污染原水的处理效果。结果表明,采用污泥回流可有效改善沉后水浊度,最佳回流比为60%,沉后水浊度从无回流时的1.91NTU下降到1.51NTU;粉末活性炭与污泥一同回流能改善滤后水有机物的去除效果。投加高锰酸钾进一步提高了处理效果,污泥回流则强化了高锰酸钾的助凝除浊效果,使有机物去除作用更显著。  相似文献   

15.
针对斜管沉淀池出水浊度高、跑矾的问题,采用专利技术"高效絮凝塔"改善反应絮凝效果,采用专利技术"水平管沉淀技术"改造斜管沉淀池,成功地将淮安市东方自来水公司三期老水厂的处理水量由2.0×104m3/d提升到4.5×104m3/d,沉淀池出水浊度<3 NTU,降低了滤池的过滤负荷,改善了出厂水水质。该工程应用是老水厂改造方式的一次重大突破。  相似文献   

16.
针对水厂混合絮凝效果差、澄清水浊度高、投药量大等问题,通过选择合适的混合方式及在澄清池加装斜管,改善了混凝沉淀效果,使澄清水浊度<3 NTU,滤后水浊度<1 NTU,药耗降低22%,并且减轻了后续工艺的负荷.  相似文献   

17.
对吸附架桥机理主导下阴离子聚丙烯酰胺(APAM)的絮凝过程进行了研究,通过改变絮凝剂投加工况,对比分析常规絮凝与多级絮凝在污染物去除效果、絮体性能、絮体生长动力学与污泥调理能耗等方面的差异。结果表明,相同投药量下,两级絮凝的出水浊度低于三级絮凝和常规絮凝,两级絮凝在最少的APAM投加量(2 mg/L)下达到最低的出水浊度(19.53 NTU);与常规絮凝相比,两级絮凝的絮体成长速率、平均粒径和沉降速率分别增加12.67%、30μm、36.74%。两级絮凝在投加间隔为240 s、投配比为1∶1条件下絮凝效能最优,出水浊度为15.34 NTU,絮体沉降速率为1.1 NTU/s,絮体密度达到1.123 4 g/cm3。絮体破碎再絮凝过程中,两级絮凝与常规絮凝破碎后均能恢复至破碎前水平,但破碎后均出现不可逆的絮体结构破损,粒径在0~100μm的絮体颗粒增多,粒径>400μm的絮体减少,破碎后两级絮凝的絮体强度因子(68.15%)高于常规絮凝(41.63%),两级絮凝的絮体强度和抗破碎剪切能力更高。在剩余污泥调理方面,两级絮凝产生的污泥只需要投加40mg/L的APAM就可以达到最低的滤饼含水率(75.5%)。因此,两级絮凝可以显著提升除浊效能与絮体性能,是强化絮凝的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号