首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
掺钨类金刚石膜离子渗硫后的微观结构与摩擦学性能   总被引:1,自引:0,他引:1  
探讨了掺钨类金刚石(W-DLC)膜沉积及离子渗硫两步合成DLC和WS2复合固体润滑膜的新方法。利用低温离子渗硫技术对4种钨含量的W-DLC膜进行离子渗硫处理,采用扫描电子显微镜(SEM)、俄歇扫描探针(SAM)、X射线光电子能谱(XPS)、拉曼光谱仪(Raman),纳米硬度计(Nano-indenter)和摩擦磨损试验机考察了渗硫处理后W-DLC膜的微观结构与摩擦学性能。结果表明:渗硫处理使W-DLC膜中生成了WS2,促进了DLC膜的石墨化,并降低了其纳米硬度;随钨含量增加,渗硫处理的W-DLC膜纳米硬度逐渐升高,摩擦系数和磨损率逐渐减小,渗硫后的27.7%W-DLC膜表现出最优异的摩擦学性能。  相似文献   

2.
目的 探究TiB2溅射电流(即TiB2含量)对WS2/TiB2复合薄膜在宽温域(25~500 ℃)下摩擦学性能的影响。方法 采用非平衡磁控溅射技术制备WS2/TiB2复合薄膜。通过场发射扫描电子显微镜(FESEM)、高分辨率透射电子显微镜(HRTEM)观察薄膜的形貌及结构;通过X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)表征薄膜结构;通过纳米压痕仪(Anton Paar,NHT2)评价薄膜的机械性能;利用高温球盘摩擦磨损试验机(THT01,03591)测试薄膜的摩擦学性能;采用光学显微镜(Olympus,STM6)、三维轮廓仪(Micro XAM–800)观察磨痕及磨斑形貌,通过HRTEM分析磨痕和磨斑的结构。结果 TiB2掺杂使WS2薄膜由高度结晶态向非晶态转变,增大了薄膜的致密度并提高了其机械性能。随着TiB2溅射电流的增大,复合薄膜的摩擦因数和磨损率呈先下降后上升的趋势。随着试验温度的升高,复合薄膜的摩擦因数先降低后升高,但磨损率一直逐渐升高。TiB2溅射电流为1.5 A时,制备的复合薄膜在宽温域(25~500 ℃)具有较低的摩擦因数和磨损率。300 ℃条件下,TiB2溅射电流为1.5 A时制备的复合薄膜在摩擦剪切力作用下重新定向形成了TiB2(101)晶体取向和平行于滑动方向的WS2(002)晶体取向,并在高环境温度和摩擦热作用下氧化形成了润滑相TiO2(001)晶体结构。结论 TiB2溅射电流为1.5 A时制备的复合薄膜具有优异的宽温域摩擦学性能。薄膜致密的非晶结构、高的硬度和弹性模量,以及在摩擦剪切力和高温氧化作用下重新结晶取向是低摩擦磨损的关键。  相似文献   

3.
利用等离子体增强化学气相沉积技术(PECVD)在单晶硅(100)表面上制备了一层含有六方金刚石结构的碳氢薄膜。采用透射电子显微镜和拉曼光谱仪对薄膜结构进行表征;并用Nano-indenterⅡ型纳米压痕仪和CSM—摩擦磨损试验机对薄膜的力学性能和摩擦学性能进行了测试。结果表明:该碳氢薄膜含有六方金刚石结构,另外还含有少量的纳米弯曲石墨片段;与制备的类金刚石碳氢薄膜相比,该薄膜具有较好的力学性能,同时该薄膜在空气环境下表现出了较好的摩擦学性能。  相似文献   

4.
高熵碳化物薄膜的脆性限制了其在高承载、长周期服役条件下的应用。精细设计的纳米复合结构可以在不损失薄膜强度前提下显著提高薄膜的韧性。采用高功率脉冲磁控溅射技术制备以非晶为基体连续相,以碳化物陶瓷相为分散相的非晶-晶体的高熵碳化物(CuNiTiNbCr)C_(x)薄膜,研究不同C_(2)H_(2)气体流量(F_(C))对薄膜成分、结构、力学性能和摩擦学性能的影响。采用能谱仪、扫描电子显微镜、X射线衍射仪、透射电子显微镜、X射线光电子能谱分析薄膜的成分、形貌、结构及各元素的化学状态,进一步采用纳米压痕以及球-盘式摩擦磨损试验机对薄膜的硬度、模量和摩擦磨损性能进行表征。结果表明,随着乙炔气体流量的增加,薄膜中碳含量逐渐增加,结构从非晶转变为非晶-晶体的纳米复合结构。纳米复合结构薄膜的硬度随着乙炔流量的增加逐渐增加,这是因为薄膜中生成大量碳化物陶瓷相,薄膜硬度最高为20 GPa。纳米复合薄膜呈现优异的摩擦学性能,在F_(C)=3 mL/min时,薄膜的摩擦性能达到最优,其磨损量为2.9×10^(-6)mm^(3)/Nm。综上,采用高功率脉冲磁控溅射技术可以精细调控薄膜结构,制备出强韧一体化、耐磨减摩的纳米复合结构(CuNiTiNbCr)C_(x)薄膜。  相似文献   

5.
反应溅射WS_2/MoS_2/C复合薄膜的摩擦磨损性能   总被引:1,自引:0,他引:1  
为了扩展在潮湿条件下WS2/MoS2复合薄膜的应用,使用WS2/MoS2作靶材,在Ar/C2H2气氛中通过反应溅射法制备WS2/MoS2/C复合薄膜。利用X射线衍射仪(XRD)、X射线能谱仪(EDX)、场发射扫描电子显微镜(FESEM)、MFT-4000材料表面性能试验仪表征薄膜的性能以便评价薄膜的微结构与摩擦性能的关系。结果表明:与纯MoS2薄膜相比,WS2/MoS2/C复合薄膜结构致密,硬度提高一个数量级;在潮湿的大气中复合薄膜的摩擦因数更低,抗磨损能力更强。  相似文献   

6.
以环戊二烯为碳源,采用等离子体增强化学气相沉积法(PECVD)在Si单晶〈n100〉面上制备了类金刚石薄膜。采用FEI Tecnai F30型高分辨透射电镜(HRTEM)和LAMRAM HR 800型拉曼光谱仪对薄膜及磨屑的结构进行表征;利用MFTR4000摩擦磨损试验机、Hysitron Ti950型原位纳米力学测试系统考察薄膜的摩擦学及力学性能。结果表明: 所制备的金刚石薄膜具有富勒烯纳米团簇/非晶复合纳米结构,在磨屑中也出现了这种稳定的片层结构从而起到了良好的减摩作用;并且薄膜表现出优异的力学性能和摩擦学性能: 其硬度为26.8 GPa、弹性回复为85%、摩擦因数为0.01。由于这种特殊纳米结构的存在,使得薄膜的力学性能及摩擦学性能显著提高。  相似文献   

7.
为了降低超硬TiAlSiN复合涂层的摩擦因数,采用多元等离子体浸没离子注入与沉积和射频(RF)磁控溅射技术制备TiAlSiN/WS2多层薄膜,利用XRD、SEM、Raman光谱、纳米探针、摩擦和电化学试验对薄膜的微结构、力学性能和腐蚀行为进行测试与分析。SEM结果表明:TiAlSiN/WS2多层薄膜具有清晰的调制周期。纳米硬度结果表明,TiAlSiN/WS2多层薄膜硬度介于TiAlSiN和WS2涂层硬度之间。摩擦实验结果证实TiAlSiN/WS2多层薄膜的摩擦因数低于TiAlSiN涂层的,且摩擦过程平稳。此外,TiAlSiN/WS2多层薄膜表现出良好的抗腐蚀能力,在相对较小的调制周期内,其腐蚀电流密度显著降低。  相似文献   

8.
目的研究不同沉积压力对磁控溅射WS2薄膜微观结构、力学性能和摩擦学性能的影响。方法采用射频磁控溅射法制备WS2薄膜。利用扫描电镜(SEM)和X射线衍射仪(XRD)对薄膜微观形貌、成分和晶相结构进行表征。用纳米压痕仪、摩擦磨损试验机和白光干涉三维形貌仪测试薄膜的力学性能和摩擦磨损性能。结果随着沉积压力增大,WS2薄膜疏松多孔结构明显降低,粗大柱状晶显著细化,薄膜致密度得到有效改善。沉积压力大于0.8Pa时,WS2薄膜表现出明显的(101)晶面择优取向。WS2薄膜硬度变化与薄膜中S/W原子比变化趋势相反,弹性模量逐渐减小。沉积压力0.4 Pa时,由于WS2薄膜大部分易滑移(002)晶面平行于基体表面,摩擦系数最低,为0.092,但其耐磨性能最差。沉积压为1.6 Pa时,WS2薄膜的磨损率最低,为2.34×10^-7 mm^3/(N·m),表现出良好的耐磨性能。结论改变沉积压力可以显著提高WS2薄膜致密度,改善薄膜的力学性能,提升WS2薄膜的摩擦磨损性能。  相似文献   

9.
采用直流磁控溅射石墨靶、中频磁控溅射碳化硅靶以及离子源辅助的复合沉积技术,制备出膜层质量优异、摩擦因数和磨损率较低的具有不同Si含量的无氢掺硅类金刚石薄膜。使用XPS、拉曼光谱仪、台阶仪、纳米硬度计、SEM、EDS以及球盘式摩擦磨损试验仪测试并表征薄膜的微观结构、力学性能和摩擦学性能。研究表明,该技术能够成功制备出无氢掺硅类金刚石薄膜;随着SiC靶功率密度的增加,薄膜中Si的含量和sp3键的含量逐渐增加,其纳米硬度和弹性模量先增大后减小,摩擦因数由0.277降低至0.066,但其磨损率从6.29×10-11 mm3/Nm增加至1.45×10-9 mm3/Nm;当SiC靶功率密度为1.37W/cm2时,薄膜的纳米硬度与弹性模量分别达到最大值16.82GPa和250.2GPa。  相似文献   

10.
CrSiN纳米复合薄膜的摩擦学性能   总被引:1,自引:0,他引:1  
采用中频非平衡反应磁控溅射技术在单晶硅P(111)基材上制备了CrSiN纳米复合薄膜。利用X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、Kevex能谱仪(EDX)、高分辨率透射电子显微镜(HRTEM)和纳米压痕仪对薄膜的相结构、化学成分组成和力学性能进行了测试分析。利用球-盘式摩擦磨损试验机(UMT-2)考察了薄膜和GCr15钢球对磨的摩擦学性能并采用扫描电镜(SEM)观察磨痕形貌。结果表明:CrN薄膜中Si元素的掺杂改变了薄膜晶体结构,所制备的CrSiN复合薄膜为多相复合结构,即nc-CrN/aSi3N4所组成的纳米晶/非晶复合结构。CrSiN纳米复合薄膜的力学性能均优于CrN薄膜,其硬度均高于CrN薄膜的硬度,其中Si原子数分数为12.6%时薄膜的硬度达到最大,对应纳米晶/非晶复合强化。CrSiN纳米复合薄膜的摩擦因数低于CrN薄膜,具有很好的抗磨损性能,并具有一定的润滑作用。  相似文献   

11.
采用磁控溅射技术在钛合金(Ti6Al4V)表面制备Cr、Cr/Cr N和Cr/Cr N/Cr NC过渡层结构的类金刚石(DLC)薄膜。采用扫描电子显微镜、拉曼光谱仪与原子力显微镜分析薄膜的结构和表面形貌,利用纳米压痕仪、薄膜内应力测试仪、划痕测试仪、摩擦试验机和二维轮廓仪研究薄膜的硬度、内应力、结合力和摩擦磨损性能。结果表明:随着Cr基梯度过渡层的引入,DLC薄膜的内应力逐渐下降,结合力逐渐上升。Cr/Cr N/Cr NC/DLC薄膜具有优异减摩抗磨性能,摩擦因数和磨损率低至0.09±0.02和(1.89±0.15)×10-7 mm3/N·m。试验结果对钛合金表面高性能DLC薄膜制备及应用具有一定的参考价值和指导意义。  相似文献   

12.
利用非平衡磁控溅射技术在单晶硅基底上沉积了类石墨非晶碳膜。利用X射线光电子光谱、Ram an光谱、高分辨透射电子显微镜及原子力显微镜对沉积薄膜的微观结构进行了详细表征;利用纳米压痕仪和球盘摩擦试验机分别对其力学性能和摩擦学性能进行了测试。结果表明,当前制备的非晶碳膜中sp2杂化碳占主导呈现出类石墨特征,但薄膜硬度可达14.2 GPa。大气环境中的摩擦性能测试表明,所制备的类石墨非晶薄膜具有优异的摩擦学性能:其承载能力高达2.8 GPa,同时具有较低摩擦因数(~0.05)和磨损率(~10-11cm3/Nm)。类石墨碳膜优异的摩擦学性能主要归因于其独特的结构、较低的内应力及良好的热稳定性。  相似文献   

13.
评述了类金刚石基(DLC、a-C)、非晶氮化碳基(a-CNx)、过渡金属氮化物基(TiN、CrN)及其改性纳米复合薄膜的水润滑摩擦学性能,分析了微观结构、梯度结构、元素掺杂、对磨材料及摩擦参数对其水润滑摩擦磨损性能的影响,并揭示了水润滑中纳米复合薄膜存在的摩擦磨损机制,指出了三种纳米复合薄膜体系在水润滑中均可表现出优异的减摩抗磨特性,但与薄膜成分、层状结构、力学性能及对磨材料物理化学性能密切相关。一般而言,相比于过渡金属氮化物基薄膜,类金刚石基及非晶氮化碳基薄膜由于在水润滑中形成转移层和水合润滑层而呈现出更低的摩擦系数和磨损率。当选用的对磨材料易于发生摩擦水合反应时,形成的水合层起到的保护作用使得纳米复合薄膜均表现出了更低的磨损率。在保证薄膜未发生剥落而失效时,适当地加载载荷和滑移速度也是获得最优水润滑摩擦学性能的关键因素。为薄膜应用在水润滑器械作业提供了一定的参考,并展望了纳米复合薄膜水润滑摩擦学未来的研究方向。  相似文献   

14.
利用等离子体增强化学气相沉积法在Si(100)基体上制备不同H2/CH4流量比下的类金刚石薄膜,采用拉曼光谱、红外光谱、扫描电子显微镜(SEM)、纳米力学性能综合测试仪以及摩擦磨损试验机对薄膜的组织结构、力学以及摩擦学性能进行了分析。结果表明:该条件下制备的薄膜具有典型的类金刚石结构且膜中氢含量较高,薄膜表面光滑,膜层致密且均匀,薄膜的硬度及与基底的附着力均随着H2/CH4流量比的增加而降低。薄膜在大气环境下具有优异的摩擦学性能,在相同的载荷及转速条件下,H2/CH4流量比对薄膜的摩擦因数影响不大。当载荷为5N时,随着转速的增加,摩擦因数降低;而载荷为10N时,摩擦因数约为0.05,转速对其影响较小。薄膜的磨损率在10-8~10-7 mm3/Nm之间变化,且随H2/CH4流量比的增加而增大。  相似文献   

15.
含氢掺硅类金刚石薄膜的制备及性能表征   总被引:1,自引:0,他引:1  
采用磁控溅射和离子源复合沉积技术,在Si片、模具钢和硬质合金上制备了均匀致密的含氢掺硅类金刚石薄膜.先用正交法优化含氢类金刚石薄膜的制备工艺,然后通过控制中频碳化硅靶的功率密度向含氢类金刚石膜层中成功掺人Si元素.采用扫描电子显微镜(SEM)、X射线光电子能谱仪(XPS)、X射线衍射仪(XRD)、硬度计、划痕仪和摩擦磨损试验机等手段测试和研究了膜层的形貌、成分、sp3和sp2含量及其性能.结果表明:优化后含氢类金刚石薄膜的制备工艺为:30 mL/min甲烷流量,100 V偏压,0.8A离子源电流;所制备的含氢掺硅类金刚石薄膜是非晶结构,膜厚2.20 μm,膜、基结合力为30 N,膜层硬度达到2039 HV.含氢掺硅类金刚石薄膜的摩擦因数受环境湿度变化很小,可应用于精密传动部件提高其使用精度.  相似文献   

16.
采用磁控溅射法,使用WS2/MoS2复合靶材,通过与乙炔气体反应溅射,制备WS2/MoS2/C复合薄膜,利用X射线衍射对薄膜的成分结构进行分析,采用MFT-4000 材料表面性能试验仪在室温大气环境(相对湿度60%)下评价薄膜的摩擦磨损性能,使用Axio CSM 700共聚焦显微镜观察WS2/MoS2/C复合薄膜磨损表面磨痕形貌,结果表明,WS2/MoS2/C复合薄膜结构致密,在潮湿大气中抗磨损性能比MoS2磁控溅射薄膜有显著提高,在30min往复摩擦后复合薄膜未发生磨屑脱落.  相似文献   

17.
采用离子束沉积技术在医用Ti6Al4V合金表面制备类金刚石薄膜(DLC),利用原子力显微镜、Raman光谱、X射线光电子能谱(XPS)及UMT-2摩擦磨损试验机对薄膜的形貌、结构、摩擦学性能进行表征。采用动电位极化对涂层前后基底的耐腐蚀性能进行测试。结果表明:制备薄膜为类金刚石碳结构,基底偏压对薄膜形貌、结构有较大影响;偏压为-100V时制备的薄膜表面粗糙度低(6.5nm),sp3/sp2比值高,摩擦学性能优异;经DLC膜保护的合金基底耐腐蚀性能获得明显改善。  相似文献   

18.
运用多靶磁控溅射技术,将软质相的WS2靶与硬质相的TiB2靶共溅射制备出WS2/TiB2固体自润滑复合涂层。运用扫描电子显微镜(SEM)和X射线衍射(XRD)对涂层截面的形貌及结构进行表征,并用纳米压痕仪和摩擦磨损试验机测试了涂层的硬度和摩擦磨损性能。结果表明,WS2/TiB2复合涂层截面的组织结构为柱状晶,且呈现TiB2(001)择优取向,当WS2靶功率从20 W增加至50 W时,TiB2(001)衍射峰强度逐渐减弱,半高宽变宽,导致涂层的平均晶粒尺寸变小。当WS2的功率超过60 W时,涂层的相结构发生由晶态到非晶态的转变。WS2/TiB2涂层具有较高的硬度(>20 GPa)和较低的摩擦因数(约0.2),即使是在相对湿度增加至50%的条件下,WS2溅射功为40 W时,WS2/TiB2复合涂层仍旧具有非常低的磨损率6×10-16 m3/(N·m),优于M2钢300多倍。  相似文献   

19.
利用热丝化学气相沉积技术在碳化硅基底上制备微米金刚石薄膜、纳米金刚石薄膜和金刚石–石墨复合薄膜,采用扫描电子显微镜、原子力显微镜和拉曼光谱仪对不同金刚石薄膜的表面形貌和微观结构进行表征,通过摩擦磨损实验测试金刚石薄膜的摩擦系数并计算其磨损率,对比研究不同种类金刚石薄膜的摩擦磨损性能。结果表明:金刚石–石墨复合薄膜具有较好的摩擦磨损性能,薄膜表面粗糙度为53.8 nm,摩擦系数为0.040,和纳米金刚石薄膜(0.037)相当;金刚石–石墨复合薄膜的磨损率最低,为2.07×10?7 mm3·N?1·m?1。在相同实验条件下,同碳化硅基底的磨损率(9.89×10?5 mm3·N?1·m?1)和摩擦系数(0.580)相比,所有金刚石薄膜的磨损率和摩擦系数均有明显提升,说明在SiC基体表面沉积金刚石薄膜能够显著提高碳化硅材料在摩擦学领域的使役性能。   相似文献   

20.
高温条件下WS2易于氧化生成WO3,导致WS2固体润滑薄膜的摩擦学性能受到较大影响。为改善WS2固体润滑薄膜在高温条件下的摩擦学性能,采用非平衡磁控溅射技术制备了共掺杂La-Ti/WS2复合薄膜,研究了靶功率对磁控溅射La-Ti/WS2复合薄膜结构和高温摩擦学性能的影响。利用扫描电镜(SEM)、X射线衍射仪(XRD)、纳米压痕仪和X射线光电子能谱仪(XPS)分析了薄膜微观形貌、成分、力学性能、微观结构。利用高温摩擦磨损试验机研究了复合薄膜的高温摩擦学性能。结果表明,高温环境下,靶功率为20W时La-Ti/WS2复合薄膜表现出优异的摩擦学性能。此时,复合薄膜H/E值最大,摩擦系数最小,平均为0.012,磨损率最低为1.56×10-8mm3/N·m,这主要归因于高温下摩擦界面产生的稀土氧化物,促使La-Ti/WS2复合薄膜的摩擦磨损机制发生了改变,使得WS2在高温受破坏的情...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号