首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inverted structure heterojunction colloidal quantum dot (CQD) photovoltaic devices with an improved performance are developed using single‐step coated CQD active layers with a thickness of ≈60 nm. This improved performance is achieved by managing the device architecture to simultaneously enhance charge generation and extraction by raising optical absorption within the depletion region. The devices are composed of an ITO/PEDOT:PSS/PbS‐CQD/ZnO/Al structure, in which the p–n heterojunction is placed at the rear (i.e., opposite to the side of illumination) of the devices (denoted as R‐Cell). Sufficient optical generation is achieved at very low CQD layer thicknesses of 45–60 nm because of the constructive interference caused by the insertion of ZnO between the CQD and the Al electrode. The power conversion efficiency (PCE) of R‐Cells containing a thin CQD layers (≈60 nm) is much higher (≈6%) than that of conventional devices containing CQD layers with a thickness of ≈300 nm (PCE ≈4.5%). This optical management strategy provides a general guide to obtain the optimal trade‐off between generation and extraction in planar p–n junction solar cells. In terms of device engineering, all the layers in our R‐Cells are fabricated using single coating, which can lead to compatibility with high‐throughput processes.  相似文献   

2.
CdS thin films are a promising electron transport layer in PbS colloidal quantum dot (CQD) photovoltaic devices. Some traditional deposition techniques, such as chemical bath deposition and RF (radio frequency) magnetron sputtering, have been employed to fabricate CdS films and CdS/PbS CQD heterojunction photovoltaic devices. However, their power conversion efficiencies (PCEs) are moderate compared with ZnO/PbS and TiO2/PbS heterojunction CQD solar cells. Here, efficiencies have been improved substantially by employing solution‐processed CdS thin films from a single‐source precursor. The CdS film is deposited by a straightforward spin‐coating and annealing process, which is a simple, low‐cost, and high‐material‐usage fabrication process compared to chemical bath deposition and RF magnetron sputtering. The best CdS/PbS CQD heterojunction solar cell is fabricated using an optimized deposition and air‐annealing process achieved over 8% PCE, demonstrating the great potential of CdS thin films fabricated by the single‐source precursor for PbS CQDs solar cells.  相似文献   

3.
In thin‐film photovoltaic (PV) research and development, it is of interest to determine where the chief losses are occurring within the active layer. Herein, a method is developed and presented by which the spatial distribution of charge collection, operando, is ascertained, and its application in colloidal quantum dot (CQD) solar cells is demonstrated at a wide range of relevant bias conditions. A systematic computational method that relies only on knowledge of measured optical parameters and bias‐dependent external quantum efficiency spectra is implemented. It is found that, in CQD PV devices, the region near the thiol‐treated hole‐transport layer suffers from low collection efficiency, as a result of bad band alignment at this interface. The active layer is not fully depleted at short‐circuit conditions, and this accounts for the limited short‐circuit current of these CQD solar cells. The high collection efficiency outside of the depleted region agrees with a diffusion length on the order of hundreds of nanometers. The method provides a quantitative tool to study the operating principles and the physical origins of losses in CQD solar cells, and can be deployed in thin‐film solar cell device architectures based on perovskites, organics, CQDs, and combinations of these materials.  相似文献   

4.
纳米结构太阳电池在未来第三代太阳电池中具有潜在应用价值。首先,介绍了各种纳米结构光伏材料的优异物理特性。然后,着重评述了不同纳米结构太阳电池近年的研究进展。这些太阳电池包括具有带隙可调谐特性的量子阱太阳电池、具有良好光吸收特性的纳米薄膜太阳电池、具有低反射率特性的纳米线太阳电池和基于多基子产生效应的量子点太阳电池。最后,提出了发展纳米结构太阳电池的若干技术对策,包括合理选择适宜纳米结构的材料、制备高质量的纳米光伏材料、优化设计太阳电池的组态结构以及揭示与阐明太阳电池中光生载流子的输运机制。  相似文献   

5.
Graphdiyne, a novel large π‐conjugated carbon hole transporting material, is employed as anode buffer layer in colloidal quantum dots solar cells. Power conversion efficiency is notably enhanced to 10.64% from 9.49% compared to relevant reference devices. Hole transfer from the quantum dot solid active layer to the anode can be appreciably enhanced only by using graphdiyne to lower the work function of the colloidal quantum dot solid. It is found that the all‐carbon buffer layer prolongs the carrier lifetime, reducing surface recombination on the previously neglected back side of the photovoltaic device. Remarkably, the device also shows high long‐term stability in ambient air. The results demonstrate that graphdiyne may have diverse applications in enhancing optoelectronic devices.  相似文献   

6.
Although the power conversion efficiency (PCE) of colloidal quantum dot solar cells (CQDSCs) has increased sharply, researchers are struggling with the lack of comprehensive device efficiency optimization strategies, which retards significant progress in CQDSC improvement. This paper addresses this critical issue through analyzing the impact of colloidal quantum dot (CQD) carrier hopping mobility, bandgap energy, illumination intensity, and electrode/CQD interface on device performance to develop a guiding criterion for CQDSC PCE optimization. This general strategy has been used for the successful fabrication of high‐efficiency CQDSCs yielding certified PCEs as high as 11.28 %. A major experimental finding of this work is that the widely used constant photocurrent density (J ph ) assumption is invalid as J ph is external‐voltage dependent due to the low carrier hopping mobility. Furthermore, the theoretical model developed herein predicts the nonmonotonic dependence of CQDSC PCE on carrier hopping mobility and bandgap energy, which were also demonstrated with the high‐efficiency CQDSCs. These results constitute a revision basis of the widespread belief that higher mobility and lower bandgap energy correspond to a higher CQDSC efficiency. Furthermore, electrode/CQD interface‐dependent surface recombination velocities were investigated in the framework of our abovementioned theoretical model using lock‐in carrierography, a contactless, large‐area frequency‐domain photocarrier diffusion‐wave imaging methodology that elucidated the carrier collection process at the electrodes through open‐circuit voltage distribution imaging. Lock‐in carrierography eliminates the limitations of today's widely used small‐spot (<0.1 cm2) testing methods which, however, raise questionable overall solar cell performance and stability estimations.  相似文献   

7.
Lead sulfide (PbS) colloidal quantum dots (CQDs) solar cells possess the advantages of absorption into the infrared, solution processing, and multiple exciton generation, making them very competitive as a low‐cost photovoltaic alternative. Employing an n‐i‐p ZnO/tetrabutylammonium (TBAI)–PbS/ethanedithiol (EDT)–PbS device configuration, the present study reports a 9.0% photovoltaic device through ZnMgO electrode engineering and graphene doping. Sol–gel‐derived Zn0.9Mg0.1O buffer layer shows better transparency and higher conduction band maximum than ZnO, and incorporation of graphene and chlorinated graphene oxide into the TBAI–PbS and EDT–PbS layer respectively boosts carrier collection, leading to device with significantly enhanced open circuit voltage and short‐circuit current density. It is believed that incorporation of graphene into PbS CQD film as proposed here, and more generally nanosheets of other materials, would potentially open a simple and powerful avenue to overcome the carrier transport bottleneck of CQD optoelectronic device, thus pushing device performance to a new level.  相似文献   

8.
The delicate influence of properties such as high surface state density and organic–inorganic boundaries on the individual quantum dot electronic structure complicates pursuits toward forming quantitative models of quantum dot thin films ab initio. This report describes the application of electron beam‐induced current (EBIC) microscopy to depleted‐heterojunction colloidal quantum dot photovoltaics (DH‐CQD PVs), a technique which affords one a “map” of current production within the active layer of a PV device. The effects of QD sample size polydispersity as well as layer thickness in CQD active layers as they pertain to current production within these PVs are imaged and explained. The results from these experiments compare well with previous estimations, and confirm the ability of EBIC to function as a valuable empirical tool for the design and betterment of DH‐CQD PVs. Lastly, extensive and unexpected PbS QD penetration into the mesoporous TiO2 layer is observed through imaging of device cross sections by energy‐dispersive X‐ray spectroscopy combined with scanning transmission electron microscopy. The possible effects of this finding are discussed and corroborated with the EBIC studies on similar devices.  相似文献   

9.
Unbalanced charge injection is deleterious for the performance of colloidal quantum dot (CQD) light‐emitting diodes (LEDs) as it deteriorates the quantum efficiency, brightness, and operational lifetime. CQD LEDs emitting in the infrared have previously achieved high quantum efficiencies but only when driven to emit in the low‐radiance regime. At higher radiance levels, required for practical applications, the efficiency decreased dramatically in view of the notorious efficiency droop. Here, a novel methodology is reported to regulate charge supply in multinary bandgap CQD composites that facilitates improved charge balance. The current approach is based on engineering the energetic potential landscape at the supra‐nanocrystalline level that has allowed to report short‐wave infrared PbS CQD LEDs with record‐high external quantum efficiency in excess of 8%, most importantly, at a radiance level of ≈5 W sr?1 m2, an order of magnitude higher than prior reports. Furthermore, the balanced charge injection and Auger recombination reduction has led to unprecedentedly high operational stability with radiance half‐life of 26 068 h at a radiance of 1 W sr?1 m?2.  相似文献   

10.
Thin film solar cells that are low in cost but still reasonably efficient comprise an important strategy for reaching price‐performance ratios competitive with fossil fuel electrical generation. Sensitized solar cells – most commonly dye but also semiconductor nanocrystal sensitized – are a thin film device option benefitting from lost cost material components and processing. Nanocrystal sensitized solar cells are predicted to outpace their dye‐based counterparts, but suffer from limited availability of approaches for integrating the nano‐sensitizers within a mesoporous oxide anode, which effectively limits the choice of sensitizer to those that are synthesized in situ or those that are easily incorporated into the oxide framework. The latter methods favor small, symmetric nanocrystals, while highly asymmetric semiconductors (e.g., nanowires, tetrapods, carbon nanotubes) have to date found limited utility in sensitized solar‐cell devices, despite their promise as efficient solar energy converters. Here, a new strategy for solar cell fabrication is demonstrated that is independent of sensitizer geometry. Nanocrystal‐sensitized solar cells are fabricated from either CdSe semiconductor quantum dots or nanowires with facile control over nanocrystal loading. Without substantial optimization and using low processing temperatures, efficiencies approaching 2% are demonstrated. Furthermore, the significance of a ‘geometry‐independent’ fabrication strategy is shown by revealing that nanowires afford important advantages compared to quantum dots as sensitizers. For equivalent nanocrystal masses and otherwise identical devices, nanowire devices yield higher power conversion efficiencies, resulting from both enhanced light harvesting efficiencies for all overlapping wavelengths and internal quantum efficiencies that are more than double those obtained for quantum dot devices.  相似文献   

11.
The effect of grating couplers on the optical properties of silicon thin‐film solar cells was studied by a comparison of experimental results with numerical simulations. The thin‐film solar cells studied are based on microcrystalline silicon (μc‐Si:H) absorber layers of thickness in the micrometer range. To investigate the light propagation in these cells, especially in the red wavelength region, three‐dimensional power loss profiles are simulated. The influence of different grating parametres—such as period size, groove height, and shape of the grating—was studied to gain more insight into the light propagation within thin‐film silicon solar cells and to determine an optimized light trapping scheme. The effect of the TCO front and TCO back side layer thickness was investigated. The calculated quantum efficiencies and short‐circuit current densities are in good agreement with the experimental data. The simulations predict further optimization criteria. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Time‐resolved optical spectroscopy is used to investigate exciton‐charge annihilation reactions in blended films of organic semiconductors. In donor–acceptor blends where charges are photogenerated via excitons, pulsed optical excitation can deliver a sufficient density of temporally overlapping excitons and charges for them to interact. Transient absorption spectroscopy measurements demonstrate clear signatures of exciton‐charge annihilation reactions at excitation densities of ≈1018 cm?3. The strength of exciton‐charge annihilation is consistent with a resonant energy transfer mechanism between fluorescent excitons and resonantly absorbing charges, which is shown to generally be strong in organic semiconductors. The extent of exciton‐charge annihilation is very sensitive not only to fluence but also to blend morphology, becoming notably strong in donor–acceptor blends with nanomorphologies optimized for photovoltaic operation. The results highlight both the value of transient optical spectroscopy to interrogate exciton‐charge annihilation reactions and the need to recognize and account for annihilation reactions in other transient optical investigations of organic semiconductors.  相似文献   

13.
中间带太阳电池是为了充分利用太阳光谱中的红外光子能量而提出的一种高效率新概念太阳电池。介绍了中间带太阳电池的能量上转换原理、量子点中间带的物理优势、量子点中间带太阳电池的结构组态和理论转换效率。评述了它的近期研究进展,并提出了发展这种新概念太阳电池的若干技术对策,其中包括补偿量子点的积累应变、优化量子点的生长参数和选择新的量子点结构。最后指出,由于应变的补偿,有序量子点层的形成以及新量子点结构的采用使太阳电池的光伏性能得以有效改善。可以预期,具有高转换效率的量子点中间带太阳电池的构建与实现将会对未来的光伏技术与产业带来革命性的影响。  相似文献   

14.
Polycrystalline CdS/CdTe thin‐film solar cells in the superstrate configuration have been studied by spectroscopic ellipsometry (SE) using glass side illumination. In this measurement method, the first reflection from the ambient/glass interface is rejected, whereas the second reflection from the glass/film‐stack interface is collected; higher order reflections are also rejected. The SE analysis incorporates parameterized dielectric functions ε for solar cell component materials obtained by in situ and variable‐angle SE. In the SE analysis of the complete cells, a step‐wise procedure ranks the fitting parameters, including thicknesses and those defining the spectra in ε, according to their ability to reduce the root‐mean‐square deviation between the simulated and measured SE spectra. The best fit thicknesses from this analysis are found to be consistent with electron microscopy. Based on the SE results, the solar cell quantum efficiency (QE) can be simulated without any free parameters, and comparisons with measured QE enable optical model refinements as well as identification of optical and electronic losses. These capabilities have wide applications in photovoltaic module mapping and in‐line monitoring. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
We present a multi‐dimensional model for comprehensive simulations of solar cells (SCs), considering both electromagnetic and electronic properties. Typical homojunction and heterojunction gallium arsenide SCs were simulated in different spatial dimensions. When considering one‐dimensional problems, the model performs carrier transport calculations following a Beer–Lambert optical absorption approximation. We show that the results of such simulations exhibit excellent agreement with the standard PC1D one‐dimensional photovoltaic simulation. Photonic and plasmonic attempts to enhance SC efficiency demand comprehensive electromagnetic calculations to be undertaken in order to acquire accurate carrier generation profiles in two and three‐dimensional systems. Our model provides complete spectral and spatial information of typical optical and electronic behavior. Furthermore, our approach permits the detailed investigation of complex systems, including plasmonic SCs, which cannot be simulated using low‐dimensional modeling tools. We present the results of numerical simulations of an optically thin plasmonic gallium arsenide SC and observe improved device performance arising from the application of plasmonic nanostructures, which agree well with previous experimental findings. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Luminescent solar concentrators (LSCs) are able to efficiently harvest solar energy through large‐area photovoltaic windows, where fluorophores are delicately embedded. Among various types of fluorophores, all‐inorganic perovskite nanocrystals (NCs) are emerging candidates as absorbers/emitters in LSCs due to their size/composition/dimensionality tunable optical properties and high photoluminescence quantum yield (PL QY). However, due to the large overlap between absorption and emission spectra, it is still challenging to fabricate high‐efficiency LSCs. Intriguingly, zero‐dimensional (0D) perovskites provide a number of features that meet the requirements for a potential LSC absorber, including i) small absorption/emission spectral overlap (Stokes shift up to 1.5 eV); ii) high PL QY (>95% for bulk crystal); iii) robust stability as a result of its large exciton binding energy; and iv) ease of synthesis. In this work, as a proof‐of‐concept experiment, Cs4PbBr6 perovskite NCs are used to fabricate semi‐transparent large‐area LSCs. Cs4PbBr6 perovskite film exhibits green emission with a high PL QY of ≈58% and a small absorption/emission spectral overlap. The optimized LSCs exhibit an external optical efficiency of as high as 2.4% and a power conversion efficiency of 1.8% (100 cm2). These results indicate that 0D perovskite NCs are excellent candidates for high‐efficiency LSCs compared to 3D perovskite NCs.  相似文献   

17.
In this progress report, the recent work in the field of light‐emitting field‐effect transistors (LEFETs) based on colloidal quantum dots (CQDs) as emitters is highlighted. These devices combine the possibility of electrical switching, as known from field‐effect transistors, with the possibility of light emission in a single device. The properties of field‐effect transistors and the prerequisites of LEFETs are reviewed, before motivating the use of colloidal quantum dots for light emission. Recent reports on these quantum dot light‐emitting field‐effect transistors (QDLEFETs) include both materials emitting in the near infrared and the visible spectral range—underlining the great potential and breadth of applications for QDLEFETs. The way in which LEFETs can further the understanding of the CQD material properties—their photophysics as well as the carrier transport through films—is discussed. In addition, an overview of technology areas offering the potential for large impact is provided.  相似文献   

18.
A spectral beam‐splitting architecture is shown to provide an excellent basis for a four junction photovoltaic receiver with a virtually ideal band gap combination. Spectrally selective beam‐splitters are used to create a very efficient light trap in form of a 45° parallelepiped. The light trap distributes incident radiation onto the different solar cells with an optical efficiency of more then 90%. Highly efficient solar cells including III–V semiconductors and silicon were fabricated and mounted into the light trapping assembly. An integrated characterization of such a receiver including the measurement of quantum efficiency as well as indoor and outdoor I–V measurements is shown. Moreover, the optical loss mechanisms and the optical efficiency of the spectral beam‐splitting approach are discussed. The first experimental setup of the receiver demonstrated an outdoor efficiency of more than 34% under unconcentrated sunlight. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Nanostructured crystalline silicon is promising for thin‐silicon photovoltaic devices because of reduced material usage and wafer quality constraint. This paper presents the optical and photovoltaic characteristics of silicon nanohole (SiNH) arrays fabricated using polystyrene nanosphere lithography and reactive‐ion etching (RIE) techniques for large‐area processes. A post‐RIE damage removal etching is subsequently introduced to mitigate the surface recombination issues and also suppress the surface reflection due to modifications in the nanohole sidewall profile, resulting in a 19% increase in the power conversion efficiency. We show that the damage removal etching treatment can effectively recover the carrier lifetime and dark current–voltage characteristics of SiNH solar cells to resemble the planar counterpart without RIE damages. Furthermore, the reflectance spectra exhibit broadband and omnidirectional anti‐reflective properties, where an AM1.5 G spectrum‐weighted reflectance achieves 4.7% for SiNH arrays. Finally, a three‐dimensional optical modeling has also been established to investigate the dimension and wafer thickness dependence of light absorption. We conclude that the SiNH arrays reveal great potential for efficient light harvesting in thin‐silicon photovoltaics with a 95% material reduction compared to a typical cell thickness of 200 µm. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Molecularly engineered weakly conjugated hybrid porphyrin systems are presented as efficient sensitizers for solid‐state dye‐sensitized solar cells. By incorporating the quinolizino acridine and triazatruxene based unit as the secondary light‐harvester as well as electron‐donating group at the meso‐position of the porphyrin core, the power conversion efficiencies of 4.5% and 5.1% are demonstrated in the solid‐state devices containing 2,2′,7,7′‐tetrakis (N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spiro bifluorene as hole transporting material. The photovoltaic performance of the triazatruxene donor based porphyrin sensitizer is better than that of the previously published porphyrin molecules exhibiting strongly conjugated push–pull structure. The effect of molecular structure on the optical and electrochemical properties, the dynamics of charge extraction, as well as the photovoltaic performance are systematically investigated, which offers a new design strategy for further refinement of porphyrin molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号