首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
针对传统沟槽栅4H-SiC IGBT关断时间长且关断能量损耗高的问题,文中利用Silvaco TCAD设计并仿真了一种新型沟槽栅4H-SiC IGBT结构。通过在传统沟槽栅4H-SiC IGBT结构基础上进行改进,在N +缓冲层中引入两组高掺杂浓度P区和N区,提高了N +缓冲层施主浓度,折中了器件正向压降与关断能量损耗。在器件关断过程中,N +缓冲层中处于反向偏置状态的PN结对N -漂移区中电场分布起到优化作用,加速了N -漂移区中电子抽取,在缩短器件关断时间和降低关断能量损耗的同时提升了击穿电压。Silvaco TCAD仿真结果显示,新型沟槽栅4H-SiC IGBT击穿电压为16 kV,在15 kV的耐压设计指标下,关断能量损耗低至4.63 mJ,相比传统结构降低了40.41%。  相似文献   

2.
基于150 mm 0.35μm CMOS工艺,利用Silvaco TCAD软件,针对50μm厚硅基上NMOS与PMOS器件、多晶硅-介电层-多晶硅(PIP)电容和N+型多晶硅电阻,在单轴状态不同弯曲半径下,仿真了压缩与拉伸对器件电学参数变化的影响程度。结果表明,单轴拉伸与压缩弯曲使NMOS的阈值电压最大漂移0.46 mV,使PMOS阈值电压最大漂移0.33 mV。漏极电流随变形量线性变化,NMOS压缩时系数为-0.132 95,NMOS拉伸时系数为0.006 01。PMOS拉伸时系数为-0.104 47,PMOS压缩时系数为-0.110 7。电阻阻值随变形量呈线性变化,当掺杂浓度分别为1×1019,2×1019,3×1019,4×1019,5×1019时,系数分别为247,498,766,1 016,1 301。电容最大变化值和初始值不超过0.5%,结论归纳为无失配影响。这些结果与实验吻合,验证了模型的正确性,为研制降低退化的柔性硅基集成电路打下基础。  相似文献   

3.
采用金属有机化学气相沉积技术,在半极性蓝宝石衬底上成功生长了具有高电子浓度和良好表面形貌的Si掺杂的非极性a面n-AlGaN外延层。深入研究了铟(In)表面活性剂和无掺杂的AlGaN缓冲层对n-AlGaN的结构特征和电学性能的影响。表征结果表明,利用In表面活性剂和无掺杂的AlGaN缓冲层,非极性a面n-AlGaN外延层的晶体质量的各向异性被有效地抑制,同时显著改善了其表面形貌和电学性能。测得非极性a面n-AlGaN的电子浓度及电子迁移率分别为-4.8×1017 cm-3和3.42 cm2/(V·s)。  相似文献   

4.
王丹  李震  高达  邢伟荣  王鑫  折伟林 《红外》2023,44(3):14-19
利用分子束外延(Molecular Beam Epitaxy, MBE)系统生长了In掺杂硅基碲镉汞(Mercury Cadmium Telluride, MCT)材料。通过控制In源温度获得了不同掺杂水平的高质量MCT外延片。二次离子质谱仪(Secondary Ion Mass Spectrometer, SIMS)测试结果表明,In掺杂浓度在1×1015~2×1016 cm-3之间。表征了不同In掺杂浓度对MCT外延层位错的影响。发现位错腐蚀坑形态以三角形为主(沿<■>方向排列),且位错密度与未掺杂样品基本相当。对不同In掺杂浓度的材料进行汞饱和低温处理后,样品的电学性能均有所改善。结果表明,In掺杂能够提高材料的均匀性,从而获得较高的电子迁移率。  相似文献   

5.
设计了一种耐压超过14kV的4H-SiC超高压PiN二极管。外延材料N-层掺杂浓度3.0×10~(14) cm~(-3),厚度140μm。通过模拟仿真,采用台面结合双JTE结终端保护结构,器件实现了14kV以上耐压,正向导通电流1A。  相似文献   

6.
应用ATLAS模拟软件,设计了吸收层和倍增层分离的(SAM)4H-SiC 雪崩光电探测器(APD)结构。分析了不同外延层厚度和掺杂浓度对器件光谱响应的影响,对倍增层参数进行优化模拟,得出倍增层的最优化厚度为0.26μm,掺杂浓度为9.0×1017cm-3。模拟分析了APD的反向IV特性、光增益、不同偏压下的光谱响应和探测率等,结果显示该APD在较低的击穿电压66.4V下可获得较高的倍增因子105;在0V偏压下峰值响应波长(250nm)处的响应度为0.11A/W,相应的量子效率为58%;临近击穿电压时,紫外可见比仍可达1.5×103;其归一化探测率最大可达1.5×1016cmHz 1/2 W-1。结果显示该APD具有较好的紫外探测性能。  相似文献   

7.
采用自行设计的水平冷壁低压化学气相沉积(LPCVD)方法在偏向〈1120〉晶向8°的n型4H-SiC(0001)衬底上进行了同质外延生长.在5.3×103Pa的低压下,外延膜生长速率超过3μm/h.电容-电压法测试表明在非有意掺杂外延膜中净施主浓度为8.4×10 15cm-3.Nomarski显微镜观察表明厚外延膜的表面光滑,生长缺陷密度很低.AFM测试显示表面均方根粗糙度为0.3nm,没有观察到宏观台阶结构.Raman谱线清晰锐利,表现出典型的4H-SiC特征.在低温PL谱中,近带边区域出现很强的自由激子峰,表明样品是高质量的.  相似文献   

8.
在传统的氮化镓沟槽栅极场效应管的基础上,通过引入AlGaN层,在异质结界面处形成二维电子气减小器件的导通电阻,并对漂移层的厚度和掺杂浓度进行讨论,使用TCAD软件对器件进行设计优化。最终优化后的漂移层厚度为6μm,掺杂浓度为5×1016 cm-3。器件获得了较低的导通电阻Ron=0.47 mΩ·cm2,较高的击穿电压VBR=2 880 V和品质因子FOM=17.6 GW·cm-2。结果显示出了沟槽栅极垂直氮化镓场效应管在高压大电流应用场景下的优势。  相似文献   

9.
宁瑾  刘忠立  高见头 《半导体学报》2005,26(z1):140-142
在n型4H-SiC外延层上,采用H2,O2合成的办法,热生长30nm的SiO2层,并制备出Al栅MOS电容,完成了C-V特性的测试和分析工作,根据测试结果得出了SiO2与4H-SiC外延层的界面特性,并计算出n型4H-SiC外延层的掺杂浓度.结果表明H2,O2合成热生长的SiO2与4H-SiC外延层之间具有较好的界面特性,界面态密度较小.n型4H-SiC外延层的掺杂均匀,浓度为1.84×1017cm-3.  相似文献   

10.
在n型4H-SiC外延层上,采用H2,O2合成的办法,热生长30nm的SiO2层,并制备出Al栅MOS电容,完成了C-V特性的测试和分析工作,根据测试结果得出了SiO2与4H-SiC外延层的界面特性,并计算出n型4H-SiC外延层的掺杂浓度.结果表明H2,O2合成热生长的SiO2与4H-SiC外延层之间具有较好的界面特性,界面态密度较小.n型4H-SiC外延层的掺杂均匀,浓度为1.84×1017cm-3.  相似文献   

11.
用文献中描述的液相外延法研究了在CdTe衬底上由化学计量熔体制备的CdxHg1-xTe合金的光致发光。大家知道,用这种方法获得的CdxHg1-xTe样品,其衬底至表面层方向具有汞含量梯度。外延层的典型厚 度为~30微米,表面是由[111]晶面构成。样品表面生长成分为x=0.5。所研究的外延层具有电子型导电性,电子迁移率为μ\~103厘米2伏特·秒时,电子浓度为n\~1013厘米-3。光致发光的激发和记录都是从外延层这一边实现的。方法的其它细节在文献[2]中作了介绍。  相似文献   

12.
High quality,homoepitaxial layers of 4H-SiC were grown on off-oriented 4H-SiC(0001) Si planes in a vertical low-pressure hot-wall CVD system(LPCVD) by using trichlorosilane(TCS) as a silicon precursor source together with ethylene(C2H4) as a carbon precursor source.The growth rate of 25-30μm/h has been achieved at lower temperatures between 1500 and 1530℃.The surface roughness and crystalline quality of 50μm thick epitaxial layers(grown for 2 h) did not deteriorate compared with the corresponding results of thinner layers(grown for 30 min).The background doping concentration was reduced to 2.13×1015 cm-3.The effect of the C/Si ratio in the gas phase on growth rate and quality of the epi-layers was investigated.  相似文献   

13.
采用高温固相法合成了Dy 3+、Eu 3+共掺杂Y3MgAl3SiO12石榴石型荧光粉。采用XRD、荧光光谱仪等仪器对样品的结构以及光谱特性进行表征,探究了Dy 3+/Eu 3+在Y3MgAl3SiO12基质结构中的光谱特征以及离子间的能量传递机制。在367 nm近紫外光激发下,Y3MgAl3SiO12:Dy 3+,Eu 3+的发射光谱包含Dy 3+的6F9/2到6H15/2和6H13/2的电子跃迁特征发射(487 nm蓝光和592 nm黄光)和Eu 3+的5D0 7F2 and 5D0 7F4特征发射峰(616 nm和710 nm红光)。在400~500 nm范围内Dy 3+发射谱与Eu 3+激发谱重叠,表明Dy 3+与Eu 3+之间存在着能量传递,能量传递的机理为电四极-电四极相互作用。该荧光粉通过调整Dy 3+和Eu 3+的掺杂浓度比封装近紫外LED芯片,可以实现单基质暖白光LED照明。  相似文献   

14.
张飞  林茂  毛鸿凯  苏芳文  隋金池 《电子科技》2021,34(1):31-35,59
针对传统沟槽栅4H-SiC IGBT关断时间长且关断能量损耗高的问题,文中利用Silvaco TCAD设计并仿真了一种新型沟槽栅4H-SiC IGBT结构.通过在传统沟槽栅4H-SiC IGBT结构基础上进行改进,在N+缓冲层中引入两组高掺杂浓度P区和N区,提高了N+缓冲层施主浓度,折中了器件正向压降与关断能量损耗.在...  相似文献   

15.
介绍了一种常开型高压4H-SiC JFET的仿真与制造工艺。通过仿真对器件结构和加工工艺进行优化,指导下一步的工艺改进。在N+型4H-SiC衬底上生长掺杂浓度(ND)为1.0×1015 cm-3,厚度为50μm的N-外延层,并采用本实验室开发的SiC JFET工艺进行了器件工艺加工。通过测试,当栅极偏压VG=-6V时,研制的SiC JFET可以阻断3 000V电压;当栅极偏压VG=7V、漏极电压VD=3V时,正向漏极电流大于10A,对应的电流密度为100A/cm2。  相似文献   

16.
利用新改进的垂直低压热壁CVD 设备,应用TCS 和C2H4 分别作为Si 源和C 源,在偏8°晶向的4H-SiC 衬底上生长出了高质量的外延膜。当生长温度在1500℃到1530℃之间时,生长速率达到了25-30μm/h。50μm 厚的外延膜(生长2 小时)的结晶质量和表面粗糙度和薄的外延膜(生长30 分钟)相比均没有发生恶化。外延膜的背景掺杂浓度下降到了2.13×1015cm-3。另外,本文还研究了C/Si 对生长速率和外延膜结晶质量的影响。  相似文献   

17.
报道了在150μm厚、掺杂浓度5.0×1014 cm-3的外延层上制备15 kV/10A超高压SiC功率MOSFET器件的研究结果.对器件原胞结构开展了仿真优化,基于材料结构、JFET区宽度和JFET区注入掺杂等条件优化,有效地提升了器件的导通能力,器件比导通电阻为204 mΩ· cm2,击穿电压大于15.7 kV,在...  相似文献   

18.
《微纳电子技术》2019,(2):95-100
阐述了6 500 V4H-SiC结势垒肖特基(JBS)二极管的设计、仿真和制备过程,并对流片结果进行了测试,分析了测试结果与仿真结果差异的原因。通过仿真对比分析了漂移区厚度、掺杂浓度、有源区p+区和场限环终端参数对器件电学特性的影响,数值模拟优化了器件元胞和终端结构的漂移区、有源区和场限环的结构参数。根据模拟结果,4H-SiC漂移区掺杂浓度为1.08×1015 cm-3、厚度为60μm,采用经过优化的70个场限环终端结构,通过完整的工艺流程,完成6 500 V4H-SiC JBS的制备。测试结果显示,室温下当6 500 V4H-SiC JBS正向导通电流密度达到3.53×105 A/m2时,正向压降为4 V,器件的反向击穿电压约为8 000 V。  相似文献   

19.
程智翔  徐钦  刘璐 《电子学报》2017,45(11):2810-2814
本文采用YON界面钝化层来改善HfO2栅介质Ge metal-oxide-semiconductor(MOS)器件的界面质量和电特性.比较研究了两种不同的YON制备方法:在Ar+N2氛围中溅射Y2O3靶直接淀积获得以及先在Ar+N2氛围中溅射Y靶淀积YN再于含氧氛围中退火形成YON.实验结果及XPS的分析表明,后者可以利用YN在退火过程中先于Ge表面吸收从界面扩散的O而氧化,从而阻挡了O扩散到达Ge表面,更有效抑制了界面处Ge氧化物的形成,获得了更优良的界面特性和电特性:较小的CET(1.66 nm),较大的k值(18.8),较低的界面态密度(7.79×1011 eV-1cm-2)和等效氧化物电荷密度(-4.83×1012 cm-2),低的栅极漏电流(3.40×10-4 A/cm2@Vg=Vfb+1 V)以及好的高场应力可靠性.  相似文献   

20.
宁瑾  刘忠立  高见头 《半导体学报》2005,26(13):140-142
在n型4H-SiC外延层上,采用H2, O2合成的办法,热生长30nm的SiO2层,并制备出Al栅MOS电容,完成了C-V特性的测试和分析工作,根据测试结果得出了SiO2与4H-SiC外延层的界面特性,并计算出n型4H-SiC外延层的掺杂浓度. 结果表明H2, O2合成热生长的SiO2与4H-SiC外延层之间具有较好的界面特性,界面态密度较小. n型4H-SiC外延层的掺杂均匀,浓度为1.84e17cm-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号