首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Frequent intense precipitation events can mobilize and carry sediment and pollutants into rivers, degrading water quality. However, how seasonal rainfall and land cover affect the complex relationship between discharge and turbidity in urban watersheds is still under investigation. Using hourly discharge, rainfall, and turbidity data collected from six stations in three adjacent watersheds between 2008 and 2017, we examined the temporal variability of the discharge–turbidity relationship along an urban–rural gradient. We quantified hysteresis between normalized discharge and turbidity by a hysteresis index and classified hysteresis loops during 377 storm events in early, mid, and late wet season. Hysteresis loop index and direction varied by site land cover type and season. Turbidity values peaked quicker in the watersheds with higher degrees of urban development than in a less urbanized watershed. The positive relation between discharge and turbidity was highest in two downstream stations in the mid wet season, whereas it was highest in two upstream stations in the early wet season. Correlation and regression analysis showed that maximum turbidity was best explained by discharge range, and the sensitivity of turbidity to discharge change was higher in the larger downstream watershed than in the small upstream watersheds. A flashiness index was negatively associated with the slope of turbidity versus discharge, suggesting that turbidity is difficult to predict solely on the basis of discharge in flashy urban streams. This paper contributes to a deeper understanding of the spatial and temporal variation of discharge–concentration relationship in urbanizing watersheds, which can help water managers increase the resiliency of water‐related ecosystem services to impacts of climate change.  相似文献   

2.
Modeling Climate Change Effects on Streams and Reservoirs with HSPF   总被引:3,自引:0,他引:3  
This study deals with the effects of the expected climate change on the hydrology of watersheds and on water resources. HSPF (Hydrological Simulation Program—Fortran) has been used to model streamflow and reservoir volume as realizations of watershed response. Climate change scenarios have been prepared based on trends expected in western Turkey in the first half of the twenty-first century and a hypothetical watershed with different land uses has been simulated. Changes in streamflow due to landuse, soil type and climate change have been examined using flood frequency and low flow analysis. The simulations have revealed quantitatively the difference among the responses of watersheds with no vegetative cover and with forests or pasture to trends in temperature and precipitation. It has also been found that monthly variations are very important in predicting the future response of watersheds. Significant differences have been observed in streamflows and reservoir volumes on a monthly basis between scenarios, soil types and land uses. Though the effects of temperature and precipitation act to counterbalance their effects on a long-term scale, on a monthly basis they can act to reinforce their effects and create drought periods and floods.  相似文献   

3.
Modeling the effects of climate change on different land uses.   总被引:1,自引:0,他引:1  
This study deals with the effects of the expected climate change on the hydrology of watersheds. The watershed response in terms of the water produced by the watershed has been modeled using HSPF (Hydrological Simulation Program-FORTRAN) for a time period which encompasses the first half of the twenty-first century. Climate change scenarios have been prepared based on trends expected in western Turkey and a hypothetical watershed with different land uses has been simulated. The trends have been extracted from the results of a general circulation model. The simulations have revealed that watersheds with no vegetative cover will respond to the trends in temperature and precipitation more rigorously than vegetated watersheds. Pasture or watersheds with deciduous or coniferous forests respond less to climate change due to the buffering mechanism of the vegetative cover and also due to the large quantities of water they transpire. It has also been found that monthly variations are important in predicting the future response of watersheds. While changes might seem small on a yearly scale, there are large differences in response among seasons.  相似文献   

4.
This study assesses snow response in the Assiniboine-Red River basin, located in the Lake Winnipeg watershed, due to anthropogenic climate change. We use a process-based distributed snow model driven by an ensemble of eight statistically downscaled global climate models (GCMs) to project future changes under policy-relevant global mean temperature (GMT) increases of 1.0 °C to 3.0 °C above the pre-industrial period. Results indicate that basin scale seasonal warmings generally exceed the GMT increases, with greater warming in winter months. The majority of GCMs project wetter winters and springs, and drier summers, while autumn could become either drier or wetter. An analysis of snow water equivalent (SWE) responses under GMT changes reveal higher correlations of snow cover duration (SCD), snowmelt rate, maximum SWE (SWEmax) and timing of SWEmax with winter and spring temperatures compared to precipitation, implying that these variables are predominantly temperature controlled. Consequently, under the GMT increases from 1.0 °C to 3.0 °C, the basin will experience successively shorter SCD, slower snowmelt, smaller monthly SWE and SWEmax, earlier SWEmax, and a transition from snow-dominated to rain-snow hybrid regime. Further, while the winter precipitation increases for some GCMs compensate the temperature-driven changes in SWE, the increases for most GCMs occur as rainfall, thus limiting the positive contribution to snow storage. Overall, this study provides a detailed diagnosis of the snow regime changes under the policy-relevant GMT changes, and a basis for further investigations on water quantity and quality changes.  相似文献   

5.
The performance of regional climate simulations is evaluated for the Great Lakes region. Three 10-year (1990–1999) current-climate simulations are performed using the MM5 regional climate model (RCM) with 36-km horizontal resolution. The simulations employed identical configuration and physical parameterizations, but different lateral boundary conditions and sea-surface temperatures derived from the NCEP Global Reanalysis and output from the CCSM3 and GISS general circulation models (GCMs). The simulation results are compared to the North American Regional Reanalysis (NARR). The three RCM simulations appeared to be more accurate in winter and least accurate in summer, and more accurate aloft than near the surface. The reanalysis-constrained simulation adequately captured the spatial distribution and seasonal cycle of the observed surface-air temperature and precipitation, but it produced consistently across all seasons a cold bias that is generally larger over the lakes than over land and a wet bias due to an overestimation of non-convective precipitation. The simulated seasonal cycle of moisture–flux convergence over the region was in very good agreement with NARR. The two GCM-driven runs adequately simulated the spatial and seasonal variation of temperature, but overestimated cold-season precipitation and underestimated summer precipitation, reversing the observed annual precipitation cycle. The GISS-driven run failed to simulate the prevailing low-level flow and moisture convergence patterns. All three RCM simulations successfully captured the impact of the Great Lakes on the region's climate, especially on winter precipitation, a significant improvement over coarse-resolution GCM simulations over the region.  相似文献   

6.
为分析鄱阳湖流域气候变化特征及评估其对流域径流的影响,研究利用1961-2010年间鄱阳湖流域29个气象站和入湖"五河"水文控制站观测数据,分析该时段内流域气候和径流量变化趋势,建立统计模型分析其对流域径流量的影响。研究结果表明:鄱阳湖流域年气温呈显著性(99%置信度检验)波动上升趋势,流域降水总体呈略上升趋势,降水天数呈下降趋势。受气候变化的影响,鄱阳湖流域径流量呈上升趋势。统计模型计算结果表明,径流量与降雨变化呈非线性关系,径流量对降雨变化有着较强的敏感性,相同的气温变化情景下,降水增加比降水减少对径流量的影响更加显著,表明降水变化对径流量有着不同程度和方向的影响作用。气温对径流的影响呈线性,但其影响不明显。未来气候变化情景下,2050年前鄱阳湖流域在高排放A2和RCP8.5情景下呈现明显增长趋势,但其径流量低于其他排放情景。  相似文献   

7.
Amraoui  N.  Sbai  M. A.  Stollsteiner  P. 《Water Resources Management》2019,33(6):2073-2092

Modelling the impacts of climate change on water resources in the Somme watershed in northern France is investigated with a multimodel ensemble to probe the sensitivity of hydrologic response to uncertainties in climate projections provided by general circulation models. At the Somme watershed scale, the average decrease in predicted recharge from seven climate models is ?18.7%. However, significant disparities appear between simulation results for different climate models. These variations are bounded between ?30.4% for the most pessimistic model and???5.6% for the most optimistic model. Moreover, seasonal gaps are markedly important. For all climate models, the impacts on groundwater levels would be greater on plateaus than in humid valleys. The water level changes would be on the order of ?10 m on the plateaus for five climate models and between 0.2 m and 0.5 m in humid valleys. The impacts of two other climate models on water levels are rather low. In addition, the monthly average discharge of the Somme River and its tributaries is predicted to decrease by 2065. The seven-model average shows that the low outlet flow rate to the Somme basin would be reduced by 23% but with disparities between models. The decrease would be more severe in the Avre basin, with the minimal discharge reduced by 32%. This study is a first step towards addressing uncertainties in climate models such that an adaptive watershed management strategy could be devised for water resource managers.

  相似文献   

8.
Eleven agricultural watersheds were continuously monitored for discharge and intensively sampled for runoff N, 1975-77, as part of the IJC Pollution from Land Use Activities Reference Group (PLUARG), Task Group C (Canadian). The watersheds, located in southern Ontario, were sampled between 30 to more than 500 times for NH4-N, N03+N02-N, and total Kjeldahl N (TKN).The predominant chemical form of runoff N was N03-N with flow weighted concentration means on sampled days ranging from 0.57 to 5.62 mg/L. In contrast, TKN means ranged from 0.64 mg/L to 2.37 mg/L while average soluble NH4-N concentrations varied from 0.03 mg/L to 0.60 mg/L. High runoff N03-N concentrations occurred from watersheds with extensive areas of tile drainage, row crops (especially com), and high kg/ha fertilizer N application rates. Elevated stream TKN concentrations were associated with watersheds with more impermeable soils.Stream N03-N loadings ranged from 2.1 ± 0.2 to 39.0 ± 7.6 kg N03-N/watershed ha. Significant N fertility losses in excess of 30 kg N03-N ha occurred from some watersheds, while other watersheds with extensive areas of hay and pasture and unimproved land gained more N03-N in precipitation than was lost as runoff. TKN loads averaged 32% and 25% of total N runoff for the 11 watersheds in 1975 and 1976 respectively. Efforts to reduce Ontario watershed N runoff should concentrate first on soluble N and therefore on improved efficiency of N fertilizer use on the extensive areas of tile drained corn in the lower Great Lakes basin. The effectiveness of standard soil erosion control methods, including grassed waterways and contour planting, should be investigated for reduction of TKN runoff.  相似文献   

9.
Climate change could have impacts on hydrologic systems threatening, availability of water supply resources. In Illinois, regional water supply planning efforts are attempting to better understand potential impacts on low flow and surface water availability through analysis of hydrologic sensitivity to a range of climate scenarios. This paper explores the development, calibration and validation of Fox River watershed model using the soil and water assessment tool (SWAT) and the model’s application to assess impacts of potential climate change. The watershed model is calibrated and validated using daily flow records at three gauging stations. Automatic model calibration followed by manual refinement of parameter values was performed. Calibration results were generally good for monthly and annual time step but only satisfactory for daily simulations. Based on simulations of global climate models produced for IPCC fourth assessment report, climate scenarios were prepared by the Illinois State Water Survey for water supply planning initiatives in north-east and east-central Illinois. These scenarios showed ranges of temperature change between 0°C to +3.3°C and annual precipitation changes between −127 to +127 mm in the next 50 years, excluding the 5% extreme ends of those climate model simulations considered. Changes in climate were reflected using adjustments to the historical record, instead of using direct outputs from individual climate models. The watershed model was used to assess the impact of potential climate change. Application results indicate that annual precipitation change of 127 mm on average increases annual water yield and 7-day low flows by 28% and 19%, respectively. In contrast, a temperature change of +3.3°C results in average reductions of annual water yield by 13% and 7-day low flows by 10%. Seasonal effects were investigated through evaluation of changes in average monthly flows. Increasing precipitation resulted in significant changes in streamflows in late summer and fall months where as increasing temperature greatly affects winter flows due to snowmelt. The key implication is that climate change-induced variability of streamflows could have major impacts on water supply availability in the Fox River watershed and in particular, increased periods of drought could result in deficit of supplies during seasons of peak water use. It must be noted that this analysis does not examine the potential impacts of population growth and water use on water supply availability, which are also expected to have substantial influences in the region.  相似文献   

10.
The parameter uncertainty in the eco-hydrological model Soil and Water Assessment Tool (SWAT) was estimated using non-unique parameter sets for the Altmühl watershed (Bavaria, Germany). The Sequential Uncertainty Fitting Algorithm (SUFI-2) was used to calibrate SWAT. The non-unique parameter sets found were subsequently applied to SWAT concurrently with climate change simulations to determine the variables of streamflow, nitrate nitrogen (NO3?-N) and total phosphorus (TP). A suite of seven bias corrected climate change simulations provided reference (1970–2000) and future (2041–2070) climate data. The non-unique behavioural parameter sets that met an objective function of NSE >0.6 during calibration were applied to SWAT with the reference climate and with the future climate simulations. The best parameter set was also propagated through SWAT with each reference and future climate simulation in turn. Combining the non-unique behavioural parameter sets for estimating uncertainty bounds with an ensemble of climate change simulations led to a wider mean monthly spread (difference between maximum and minimum) of simulated NO3?-N and TP than using the best run with the future climate simulations. More monthly data was considered using the non-unique approach, resulting in statistical significances for more months of the year and overall lower interquartile ranges. The study quantifies the non-unique behavioural parameter set contributions to the modelling prediction, which assists in making more informed decisions based on available knowledge, with its limitations, of the future simulations. We outline a simple approach that can easily be replicated for similar hydrological modelling studies.  相似文献   

11.
Reproductive success of stream‐spawning Oncorhynchus fishes (Pacific salmon, rainbow trout, cutthroat trout and their allies) may be greatly affected by stream discharge or its covariate, stream temperature, during the spawning season. Because such data for the physical environment may not have been routinely collected as part of previous investigations of these fishes, identification of simple but robust indices of historic, seasonal stream discharge and temperature, using long‐term climate data sets, would be important, especially to investigations of historic population dynamics. This study examined statistical associations among several climate variables and the spawning‐season (approximately June) discharges and temperatures of Clear Creek, a Yellowstone Lake tributary used by spawning Yellowstone cutthroat trout, Oncorhynchus clarkii bouvieri (YCT), from the lake. Correlation analysis showed that total water‐year degree‐days (calculated on the basis of mean daily air temperature > 0°C) at Lake Village, on the lake's north shore, was a robust index (both negative and positive, respectively) of consecutive, total semi‐month metrics of creek discharge and temperature during the YCT spawning season. This study (and subsequent use of the Lake Village degree days metric as an environmental variable in a dynamic, age‐structured model of the lacustrine–adfluvial YCT population of Clear Creek) showed how exploratory analyses of the fragmentary but long‐term and regionally unique data sets for Clear Creek discharge and temperature revealed a simple but robust index of climate variation important to understanding the historic dynamics of Clear Creek's YCT population, which is a key spawning stock of Yellowstone Lake. In addition, the extensive statistical associations among the climate variables, along with the temporal trends in two key variables, broadly showed how climate varied across the Yellowstone Lake region during the past several decades. Those observations have implications for the historic, seasonal hydrology of all Yellowstone Lake tributaries used by spawning YCT. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Reservoirs often play an important role in mitigating water supply problems. However, the implications of climate change are not always considered in reservoir planning and management. This study aimed to address this challenge in the Alto Sabor watershed, northeast Portugal. The study analysed whether or not the shortage of water supply can be effectively addressed through the construction of a new reservoir (two-reservoir system) by considering future climate projections. The hydrological model Soil and Water Assessment Tool (SWAT) was calibrated and validated against daily-observed discharge and reservoir volume, with a good agreement between model predictions and observations. Outputs from four General Circulation Models (GCM) for two scenarios (RCP 4.5 and 8.5) were statistically downscaled and bias-corrected with ground observations. A general increase in temperature is expected in the future while the change in precipitation is more uncertain as per the differences among climatic models. In general, annual precipitation would slightly decrease while seasonal changes would be more significant, with more precipitation in winter and much less in spring and summer. SWAT simulations suggest that the existence of two-reservoir will better solve the water supply problems under current climate conditions compared to a single-reservoir system. However in the future, the reliability of this solution will decrease, especially due to the variability of projections from the different climatic models. The solution to water supply problems in this region, adopted taking only present-day climate into account, will likely be inefficient for water supply management under future climate conditions.  相似文献   

13.
Given the large share of the water budget contributed by evapotranspiration (ET), accurately estimating ET is critical for hydro-climate change studies. Routinely, hydrologic models use temperature proxy relationships to estimate potential evapotranspiration (PET) when forced using GCM/RCM projections of precipitation and temperature. A limitation of this approach is that the temperature proxy relationships do not account for the conservation of energy needed to estimate ET consistently in climate change scenarios. In particular, PET methods using temperature as a proxy fail to account for the negative feedback of ET on surface temperature. Using several GCM projections and a hydrologic model developed for the Great Lakes basin watersheds, the NOAA Large Basin Runoff Model (LBRM), the importance of maintaining a consistent energy budget in hydrologic and climate models is demonstrated by comparing runoff projections from temperature proxy and energy conservation methods. Differences in hydrologic responses are related to watershed characteristics, hydrologic model parameters and climate variables. It is shown that the temperature proxy approach consistently leads to prediction of relatively large and potentially unrealistic reductions in runoff. Therefore, hydrologic projections adhering to energy conservation principles are recommended for use in climate change impact studies.  相似文献   

14.

Selecting an optimal location to maximize low impact development (LID) efficiency while accounting for future climate change is a difficult problem that requires multiple criteria to be considered. This study used a coupled approach of Fuzzy-TOPSIS and VIKOR to prioritize the best sites for permeable pavement in an urban watershed while considering climate change scenarios. The future climate change scenario known as shared socioeconomic pathways (SSPs) was used, with ten CMIP6 GCMs. Future monthly precipitation data were bias corrected using a quantile mapping method. The Mokgamcheon watershed, Korea, which has been highly urbanized, was selected, and its 27 sub-watersheds were determined to be the best candidate sites for permeable pavement. The evaluation criteria were determined based on the driving force-pressure-state-impact-response framework, and the corresponding values for the 27 sub-watersheds were obtained from national statistics, bias-corrected precipitation values, and simulations of the Storm Water Management Model (SWMM). The relative closeness to the positive ideal solution was calculated in each case using Fuzzy-TOPSIS, and priority scores were aggregated using the VIKOR method. The priority of permeable pavement was higher in the downstream watershed, which was more urbanized than in the upstream watershed. The results of this study can be helpful to establish a plan for improving the water cycles in urban watersheds under future climate change scenarios.

  相似文献   

15.
黄河中上游地区入湖流域干旱特征时空变化对下游淡水湖泊水量调控及生态环境改善具有重要作用。基于乌梁素海东部流域23个水文气象站1986-2015年的逐日降水资料,经预白化处理后,选取基于标准化降水指数(SPI)的干旱历时和干旱严重度作为评价指标,应用Mann-Kendall法分析30 a来乌梁素海东部流域的干旱特征及变化趋势。研究结果表明:乌梁素海东部流域山区降水量多于平原地区降水量;干旱历时及干旱严重度随时间变化均不显著,流域北部和东南部地区干旱呈持续发展趋势;短时间尺度气象干旱集中发生在流域中部及东南部,中长时间尺度的农业和水文干旱共同发生在流域北部。在乌梁素海降水量微幅减少的趋势下,由于东部流域受水利工程建设等人类活动的影响,流域径流补给量呈明显降低趋势,而为改善湖泊水质、抑制黄藻,必然需相应增加凌汛期及灌溉间隙期引黄水量,二者关系的有效平衡及合理调控,可为区域从量质综合角度改善湖泊环境提供新思路。  相似文献   

16.
Statistically and dynamically downscaled climate projections are the two important data sources for evaluation of climate change and its impact on water availability, water quality and ecosystems. Though bias correction helps to adjust the climate model output to behave more similarly to observations, the hydrologic response still can be biased. This study uses Variable Infiltration Capacity (VIC) model to evaluate the hydrologic response of the trans-state Oologah Lake watershed to climate change by using both statistically and dynamically downscaled multiple climate projections. Simulated historical and projected climate data from the North American Regional Climate Change Assessment Program (NARCCAP) and Bias-Corrected and Spatially Downscaled–Coupled Model Intercomparison Phase 3 (BCSD-CMIP3) forced the hydrologic model. In addition, different river network upscaling methods are also compared for a higher VIC model performance. Evaluation and comparison shows the following the results. (1) From the hydrologic point of view, the dynamically downscaled NARCCAP projection performed better, most likely in capturing a larger portion of mesoscale-driven convective rainfall than the statistically downscaled CMIP3 projections; hence, the VIC model generated higher seasonal streamflow amplitudes that are closer to observations. Additionally, the statistically downscaled GCMs are less likely to capture the hydrological simulation probably due to missing integration of climate variables of wind, solar radiation and others, even though their precipitation and temperature are bias corrected to be more favorably than the NARCCAP simulations. (2) Future water availability (precipitation, runoff, and baseflow) in the watershed would increase annually by 3–4 %, suggested by both NARCCAP and BCSD-CMIP3. Temperature increases (2.5–3 °C) are much more consistent between the two types of climate projections both seasonally and annually. However, NARCCAP suggested 2–3 times higher seasonal variability of precipitation and other water fluxes than the BCSD-CMIP3 models. (3) The hydrologic performance could be used as a potential metric to comparatively differentiate climate models, since the land surface and atmosphere processes are considered integrally.  相似文献   

17.
Anthropogenic climate change is likely to have significant impacts on river systems, particularly on rivers dominated by seasonal snowmelt. In addition to altering the timing and magnitude of streamflow, climate change can affect the energy available to transport sediment, as well as the availability of sediment to be transported. These hydrologic changes are sensitive to local climate, which is largely controlled by topography, but climate models cannot resolve processes at these scales. Here, I investigate impacts of climate change on streamflow and suspended‐sediment transport for three snowmelt‐dominated rivers in the interior Pacific Northwest – the Tucannon River in Washington and the South Fork Coeur d'Alene and Red rivers in Idaho – using downscaled climate simulations from regional climate models (a range of three models plus an ensemble average) to drive a basin‐scale hydrologic model. The results indicate that climate change is likely to amplify the annual cycle of river discharge, producing higher winter discharge (increases in ensemble mean January discharge ranging from 4.1% to 34.4% for the three rivers), an earlier spring snowmelt peak (by approximately one month), and lower summer discharge (decreases in ensemble mean July discharge ranging from 5.2% to 47.2%), relative to a late 20th‐century baseline. The magnitude of the largest simulated flood under the ensemble‐average climate change scenario increases by 0.6–41.6% across the three rivers. Simulated changes in suspended‐sediment transport generally follow the changes in streamflow. These changes in discharge and sediment transport will likely produce significant impacts on the study rivers, including changes in flooding, physical habitat, and river morphology. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The aim of this paper is to develop a physical based distributed runoff model for flood simulation considering spatially and temporally varied rainfall and to evaluate the feasibility of an offline mode under typhoon and convective storm events for Korean watershed. Additionally, an auto-calibration method for initial soil moisture conditions that have an effect on discharge was proposed, and Namgang watershed (2,293 km2) was applied as study site. Distributed rainfall according to grid resolution was generated by using a pre-process program of radar rainfall from the JNI radar. Also, GIS hydrological parameters were extracted from basic GIS data such as DEM, land cover and soil map, and used as input data of the model. The Namgang watershed was divided into square grids of 500 m resolution and calculated by kinematic wave into an outlet through channel networks to evaluate capability of the developed model.  相似文献   

19.
Understanding the uncertainty of climate models in space and time is necessary to help water resources managers and hydrologists in the selection of appropriate model for a specific application. In this paper, we use three separate methods to evaluate and compare the utility of 14 climate models for seven basins with area range of 2,656–26,355 km2 on the South Korean Peninsula. On the one hand, the method of probabilistic uncertainty analysis is used to evaluate the capability of the studied General Circulation Models (GCMs) in recognizing the extreme events. On the other hand, we use two statistical tests (correlation coefficient and root mean square error) to examine the capability of the GCMs in simulating quantitatively each event. The results show that, for the first method, the performance of climate model varies depending on the number of climate model nodes used for a specific application of given basin, especially for monthly time scale. In addition, we find that, there are several GCMs showing good results for the probabilistic uncertainty test but poor results for the statistical test and conversely. Therefore, climate models should be evaluated for specific applications and specific regions. The results indicated quite clearly that, it is not easy to select an optimal climate model which can satisfy both applications using precipitation and temperature projections. However, the results of this study suggest that, there are several GCMs which are more useful than the others for general hydrological application in South Korean peninsula.  相似文献   

20.
选用黄河中游两个小流域,基于相似流域法探求分布式水文模型SWAT在黄河中游小流域无资料地区径流模拟的适用性。通过距离、流域面积相近及属性相似的方法,用已知流域率定参数移植到无资料流域进行径流模拟。选取2009-2013年的日径流与月径流进行模型率定,以效率系数(NS)和决定系数(R2)为评价指标,率定出4个模型敏感系数,并用2014-2016年的日径流与月径流进行模型验证。结果显示:率定期月径流模拟的R2为0. 76,NS为0. 70;日径流模拟的R2为0. 70,NS为0. 64;验证期月径流模拟的R2为0. 82,NS为0. 74;日径流模拟的R2为0. 78,NS为0. 68。说明基于相似流域法的SWAT模型对于无资料的小流域月径流量模拟具有很好的适用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号