首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Toward our comprehensive understanding of legged locomotion in animals and machines, the compass gait model has been intensively studied for a systematic investigation of complex biped locomotion dynamics. While most of the previous studies focused only on the locomotion on flat surfaces, in this article, we tackle with the problem of bipedal locomotion in rough terrains by using a minimalistic control architecture for the compass gait walking model. This controller utilizes an open-loop sinusoidal oscillation of hip motor, which induces basic walking stability without sensory feedback. A set of simulation analyses show that the underlying mechanism lies in the “phase locking” mechanism that compensates phase delays between mechanical dynamics and the open-loop motor oscillation resulting in a relatively large basin of attraction in dynamic bipedal walking. By exploiting this mechanism, we also explain how the basin of attraction can be controlled by manipulating the parameters of oscillator not only on a flat terrain but also in various inclined slopes. Based on the simulation analysis, the proposed controller is implemented in a real-world robotic platform to confirm the plausibility of the approach. In addition, by using these basic principles of self-stability and gait variability, we demonstrate how the proposed controller can be extended with a simple sensory feedback such that the robot is able to control gait patterns autonomously for traversing a rough terrain.  相似文献   

2.
In order to properly function in real-world environments, the gait of a humanoid robot must be able to adapt to new situations as well as to deal with unexpected perturbations. A promising research direction is the modular generation of movements that results from the combination of a set of basic primitives. In this paper, we present a robot control framework that provides adaptive biped locomotion by combining the modulation of dynamic movement primitives (DMPs) with rhythm and phase coordination. The first objective is to explore the use of rhythmic movement primitives for generating biped locomotion from human demonstrations. The second objective is to evaluate how the proposed framework can be used to generalize and adapt the human demonstrations by adjusting a few open control parameters of the learned model. This paper contributes with a particular view into the problem of adaptive locomotion by addressing three aspects that, in the specific context of biped robots, have not received much attention. First, the demonstrations examples are extracted from human gaits in which the human stance foot will be constrained to remain in flat contact with the ground, forcing the “bent-knee” at all times in contrast with the typical straight-legged style. Second, this paper addresses the important concept of generalization from a single demonstration. Third, a clear departure is assumed from the classical control that forces the robot’s motion to follow a predefined fixed timing into a more event-based controller. The applicability of the proposed control architecture is demonstrated by numerical simulations, focusing on the adaptation of the robot’s gait pattern to irregularities on the ground surface, stepping over obstacles and, at the same time, on the tolerance to external disturbances.  相似文献   

3.
This article deals with the design of a control system for a quadrupedal locomotion robot. The proposed control system is composed of a leg motion controller and a gait pattern controller within a hierarchical architecture. The leg controller drives actuators at the joints of the legs using a high-gain local feedback control. It receives the command signal from the gait pattern controller. The gait pattern controller, on the other hand, involves nonlinear oscillators. These oscillators interact with each other through signals from the touch sensors located at the tips of the legs. Various gait patterns emerge through the mutual entrainment of these oscillators. As a result, the system walks stably in a wide velocity range by changing its gait patterns and limiting the increase in energy consumption of the actuators. The performance of the proposed control system is verified by numerical simulations. This work was presented in part at the Fifth International Symposium on Artificial Life and Robotics, Oita, Japan, January 26–28, 2000  相似文献   

4.
无动力双足步行机器人控制策略与算法   总被引:2,自引:1,他引:1  
本文研究无动力双足步行机器人的建模、分析与控制问题. 基于能量的控制增加了机器人行走极限环的稳定性、鲁棒性, 扩大了极限环的收敛域; 角度不变控制使机器人的稳定行走步态摆脱了地面倾斜角度的限制; 把基于能量的控制与角度不变控制结合起来, 可以实现在不同倾斜角度地面上行走模式的切换. 基于能量的行走平均速度控制方法在平均速度与目标能量之间建立了联系, 能使机器人的行走产生新的稳定步态. 最后, 对无动力双足步行机器人的研究前景做了展望.  相似文献   

5.
This paper presents an adaptive two-level control strategy for a biped walking model and demonstrates its performance in a wide range of walking modes with considerably diverse model and control parameter settings. Proposed control strategy inherits a push off that resembles considerably to forceful extension of the trailing leg during push off in human locomotion and represents a very important source of forward propulsion. Extensive simulations have shown that adjustments in the push off related parameter on higher between-step control level after each step enable evolution of various walking modes of the biped walker at selected walking speeds and distinctive gait patterns. It also allows us to investigate the changes in gait kinematics and kinetics of the biped walking model due to changes in gait velocity, torso inclination and propulsion distribution profiles.  相似文献   

6.
仿生机器鱼的研究已经成为一个富有挑战性的热点问题.为了控制机器鱼自身的运动和姿态,本文研究了胸鳍对机器鱼运动的影响,并且基于CPG模型,提出了一种运动控制方法.采用的控制模型由4个振荡器构成,可根据反馈的信息产生节律信号以控制机器鱼胸鳍和尾鳍的运动.根据CPG模型参数与反馈输入之间的关系,设计了机器鱼俯仰和转弯反馈控制方法,利用反馈的信息自主调节CPG参数,达到控制胸鳍运动模式的目的.仿真实验验证了控制模型和反馈策略的有效性.  相似文献   

7.
双足机器人的双脚支撑期是实现其步行运动的重要过程,然而耦合的位置/力控制难以保证其稳定平滑运动.本文提出了一种基于降阶位置/力模型的机器人控制策略,整合了位置控制子空间模型和力控制子空间模型,通过模型降阶减小了控制器设计的复杂度,并采用神经网络自适应控制方法综合多控制目标,实现了双足机器人的平滑稳定控制并有效地抑制了系统外扰和参数不确定性的影响.最后,仿真算法验证了该控制方法和模型的有效性.  相似文献   

8.
Control of variable speed gaits for a biped robot   总被引:1,自引:0,他引:1  
We discuss a balance scheme for handling variable-speed gaits that was implemented on an experimental biped at the University of New Hampshire. The control scheme uses preplanned but adaptive motion sequences in combination with closed-loop reactive control. CMAC neural networks are responsible for the adaptive control of side-to-side and front-to-back balance. The biped is able to walk with variable-speed gaits and to change gait speeds on the fly. The slower gait speeds require statically balanced walking, while the faster speeds require dynamically balanced walking. It is not necessary to distinguish between the two balance modes within the controller. Following training, the biped is able to walk on flat, nonslippery surfaces at forward velocities in the range of 21 cm/min to 72 cm/min, with an average stride length of 6.5 cm  相似文献   

9.
We previously developed a locomotion control system for a biped robot using nonlinear oscillators and verified the performance of this system in order to establish adaptive walking through the interactions among the robot dynamics, the oscillator dynamics, and the environment. In order to clarify these mechanisms, we investigate the stability characteristics of walking using a five-link planar biped robot with a torso and knee joints that has an internal oscillator with a stable limit cycle to generate the joint motions. Herein we conduct numerical simulations and a stability analysis, where we analytically obtain approximate periodic solutions and examine local stability using a Poincaré map. These analyses reveal (1) stability characteristics due to locomotion speed, torso, and knee motion, (2) stability improvement due to the modulation of oscillator states based on phase resetting using foot-contact information, and (3) the optimal parameter in the oscillator dynamics for adequately exploiting the interactions among the robot dynamics, the oscillator dynamics, and the environment in order to increase walking stability. The results of the present study demonstrate the advantage and usefulness of locomotion control using oscillators through mutual interactions.  相似文献   

10.
This article proposes a new hybrid control method, a combination of impedance control and computed‐torque control, to control biped robot locomotion. The former is used for the swinging (or unconstrained) leg and the latter for the supporting (or constrained) leg. This article also suggests that the impedance parameters be changed depending on the gait phase of the biped robot. To reduce the magnitude of the impact and to guarantee a stable footing during foot contact with the ground, the damping of the leg is increased drastically at the moment of contact. Computer simulations of a biped robot, with 3 DOF in each leg and the environment represented by a 3‐DOF environment model composed of linear and nonlinear compliant elements, were performed. Simulation results show that the performance of the proposed controller is superior to that of the computed‐torque controller, especially in reducing impact and stabilizing the footing. They also show that the proposed controller makes the biped robot more robust to the uncertainties in its own parameters as well as in its environment. © 2000 John Wiley & Sons, Inc.  相似文献   

11.
12.
The execution of the gaits generated with the help of a gait planner is a crucial task in biped locomotion. This task is to be achieved with the help of a suitable torque based controller to ensure smooth walk of the biped robot. It is important to note that the success of the developed proportion integration differentiation (PID) controller depends on the selected gains of the controller. In the present study, an attempt is made to tune the gains of the PID controller for the biped robot ascending and descending the stair case and sloping surface with the help of two non-traditional optimization algorithms, namely modified chaotic invasive weed optimization (MCIWO) and particle swarm optimization (PSO) algorithms. Once the optimal PID controllers are developed, a simulation study has been conducted in computer for obtaining the optimal tuning parameters of the controller of the biped robot. Finally, the optimal gait angles obtained by using the best controller are fed to the real biped robot and found that the biped robot has successfully negotiated the said terrains.  相似文献   

13.
The paper develops a unified feedback control law for n degree-of-freedom biped robots with one degree of underactuation so as to generate periodic orbits on different slopes. The periodic orbits on different slopes are produced from an original periodic orbit, which is either a natural passive limit cycle on a specific slope or a stable periodic walking gait on level ground generated with active control. First, inspired by the controlled symmetries approach, a general result on gait generation on different slopes based on a periodic orbit on a specific slope is obtained. Second, the time-scaling control approach is integrated to reproduce geometrically same periodic orbits for biped robots with one degree of underactuation. The degree of underactuation is compensated by one degree-of-freedom in the temporal evolution that scales the original periodic orbit. Necessary and sufficient conditions are investigated for the existence and stability properties of periodic orbits on different slopes with the proposed control law. Finally, the proposed approach is illustrated by two kinds of underactuated biped robots: one has a passive gait on a specific ground slope and the other does not have a natural passive gait.  相似文献   

14.
Biologically inspired control approaches based on central pattern generators (CPGs) with neural oscillators have been drawing much attention for the purpose of generating rhythmic motion for biped robots with human-like locomotion. This article describes the design of a neural-oscillator-based gait-rhythm generator using a network of Matsuoka oscillators to generate a walking pattern for biped robots. This includes the proper consideration of the oscillator’s parameters, such as a time constant for the adaptation rate, coupling factors for mutual inhibitory connections, etc., to obtain a stable and desirable response from the network. The article examines the characteristics of a CPG network with six oscillators, and the effect of assigning symmetrical and asymmetrical coupling coefficients among oscillators within the network structure under different possible inhibitions and excitations. The kinematics and dynamics of a five-link biped robot have been modeled, and its joints are actuated through simulation by the torques output from the neural rhythm generator to generate the trajectories for hip, knee, and ankle joints. The parameters of the neural oscillators are tuned to achieve flexible trajectories. The CPG-based control strategy is implemented and tested through a simulation. This work was presented in part at the 12th International Symposium on Artificial Life and Robotics, Oita, Japan, January 25–27, 2007  相似文献   

15.
动态双足机器人的控制与优化研究进展   总被引:1,自引:0,他引:1  
对动态双足机器人的可控周期步态的稳定性、鲁棒性和优化控制策略的国内外研究现状与发展趋势进行了探讨.首先,介绍动态双足机器人的动力学数学模型,进一步,提出动态双足机器人运动步态和控制系统原理;其次,讨论动态双足机器人可控周期步态稳定性现有的研究方法,分析这些方法中存在的缺点与不足;再次,研究动态双足机器人的可控周期步态优化控制策略,阐明各种策略的优缺点;最后,给出动态双足机器人研究领域的难点问题和未来工作,展望动态双足机器人可控周期步态与鲁棒稳定性及其应用的研究思路.  相似文献   

16.
To improve the locomotion performance of legged robots, the swing leg retraction (SLR) technique is investigated in a hydraulic biped robot. First, the influence of SLR on the locomotion performance of the hydraulic biped robot is analyzed in theory and simulations based on an extended spring load inverted pendulum model. The influence contains three performance indicators: energy loss/effiency, friction/slipping, and impact/compliance. Second, by synthesizing three performance indicators, using unified objective method and particle swarm optimization algorithm, the optimal SLR rate for gait planning based on Bezier curve is addressed. Finally, experiments are implemented to validate the effectiveness and feasibility of proposed method. And, the results show that the SLR technique is useful to reduce the impact force, improve the robot's locomotion stability and make room for impedance performance improvement of compliance controller. This research provides an insight for locomotion control of hydraulic legged robots.  相似文献   

17.
Shim Y  Husbands P 《Neural computation》2012,24(8):2185-2222
We present a general and fully dynamic neural system, which exploits intrinsic chaotic dynamics, for the real-time goal-directed exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modeled as a network of neural oscillators that are initially coupled only through physical embodiment, and goal-directed exploration of coordinated motor patterns is achieved by chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organized dynamics, each of which is a candidate for a locomotion behavior. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states, using its intrinsic chaotic dynamics as a driving force, and stabilizes on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced, which results in an increased diversity of motor outputs, thus achieving multiscale exploration. A rhythmic pattern discovered by this process is memorized and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronization method. Our results show that the novel neurorobotic system is able to create and learn multiple locomotion behaviors for a wide range of body configurations and physical environments and can readapt in realtime after sustaining damage.  相似文献   

18.
Common methods of gait generation of bipedal locomotion based on experimental results, can successfully synthesize biped joints’ profiles for a simple walking. However, most of these methods lack sufficient physical backgrounds which can cause major problems for bipeds when performing fast locomotion such as running and jumping. In order to develop a more accurate gait generation method, a thorough study of human running and jumping seems to be necessary. Most biomechanics researchers observed that human dynamics, during fast locomotion, can be modeled by a simple spring loaded inverted pendulum system. Considering this observation, a simple approach for bipedal gait generation in fast locomotion is introduced in this paper. This approach applies a nonlinear control method to synchronize the biped link-segmental dynamics with the spring-mass dynamics. This is done such that while the biped center of mass follows the trajectory of the mass-spring model, the whole biped performs the desired running/jumping process. A computer simulation is done on a three-link under-actuated biped model in order to obtain the robot joints’ profiles which ensure repeatable hopping. The initial results are found to be satisfactory, and improvements are currently underway to explore and enhance the capabilities of the proposed method.  相似文献   

19.
提出了一种正弦驱动与传感反馈结合的双足机器人仿生行走控制方法.所有关节由正弦振荡器驱动, 较之相互耦合的神经元振荡器更加简单;控制参数具有明晰的物理意义,便于对运动模式进行调节.传感反馈表征 了机器人的运动状态,对于保证机器人的稳定行走起着至关重要的作用.将机器人碰地、碰膝等关键运动状态作为 相位反馈,对控制力矩进行相位重置,协调各关节动作,进而实现控制器、机器人、环境的耦合.同时,从节省能量 和仿生的角度,考虑了关节运动的被动特性,确定了各关节力矩的作用区间.仿真结果表明,该控制方法能实现机 器人稳定行走,并具有良好的能效性和自稳定性.  相似文献   

20.
This paper describes a human gait animation system with a precise neuromusculoskeletal model and evolutionary computation. The neuromusculoskeletal model incorporates 14 rigid bodies, 19 degrees of freedom, 60 muscular models, 16 pairs of the neural oscillators, and other neuronal systems. By changing the search parameters and the evaluative criteria of the evolutionary search process, we demonstrate various locomotive patterns, such as normal gait, pathological gait, running and ape‐like walking. The proposed simulation system takes not only kinematic data but also in vivo dynamic data such as energy consumption information into consideration, so that the resultant locomotion patterns are natural and valid from a biomechanical point of view. Hence the simulation system can also be used for finding a biologically appropriate physical model to realize a desired gait by simultaneously modifying the body dynamics parameters with the neuronal parameters. This capability creates a novel application of human gait simulation systems, such as rehabilitation tool design and consultation for physically handicapped people. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号