首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
用0.25μm CMOS工艺实现一个复杂的高集成度的2.5Gb/s单片时钟数据恢复与1:4分接集成电路.对应于2.5Gb/s的PRBS数据(231-1),恢复并分频后的625MHz时钟的相位噪声为-106.26dBc/Hz@100kHz,同时2.5Gb/s的PRBS数据分接出4路625Mb/s数据.芯片面积仅为0.97mm×0.97mm,电源电压3.3V时核心功耗为550mW.  相似文献   

2.
提供了应用于光纤传输系统同步数字体系(SDH)STM-16级别(2.5 Gb it/s)的全集成光接收机电路的设计。采用TSMC 0.25μm CMOS工艺进行流片。芯片对应于5μA的2.5 Gb it/s的PRBS输入码流(231-1),可恢复出一路1.25 GHz时钟,同时将2.5 Gb it/s的PRBS数据分接成4路625 Mb it/s数据,输出的时钟与数据均为标准的400 mV的PCML电平。芯片面积为1.04 mm×0.97 mm,电源电压为3.3 V时功耗为850 mW。  相似文献   

3.
A high integrated monolithic IC,with functions of clock recovery,data decision,and 1∶4 demultiplexer,is implemented in 0.25μm CMOS process for 2.5Gb/s fiberoptic communications.The recovered and frequency divided 625MHz clock has a phase noise of -106.26dBc/Hz at 100kHz offset in response to a 2.5Gb/s PRBS input data (2~31-1).The 2.5Gb/s PRBS data are demultiplexed to four 625Mb/s data.The 0.97mm×0.97mm IC consumes 550mW under a single 3.3V power supply (not including output buffers).  相似文献   

4.
介绍了利用0.18μmCMOS工艺实现了应用于光纤传输系统SDHSTM-64级别的时钟和数据恢复电路。采用了电荷泵锁相环(CPPLL)结构,CPPLL中的鉴相器能够鉴测相位产生超前滞后逻辑,采样数据具有1∶2分接的功能。振荡器采用全集成LC压控振荡器,鉴相器采用半速率的结构。对应于10Gb/s的PRBS数据(231-1),恢复出的5GHz时钟的相位噪声为-112dBc/Hz@1MHz,同时10Gb/s的PRBS数据分接出两路5Gb/s数据。芯片面积仅为1.00mm×0.8mm,电源电压1.8V时功耗为158mW。  相似文献   

5.
设计了一个应用于SFI-5接口的2.5Gb/s/ch数据恢复电路.应用一个延迟锁相环,将数据的眼图中心调整为与参考时钟的上升沿对准,因而同步了并行恢复数据,并降低了误码率.采用TSMC标准的0.18μm CMOS工艺制作了一个单通道的2.5Gb/s/ch数据恢复电路,其面积为0.46mm2.输入231-1伪随机序列,恢复出2.5Gb/s数据的均方抖动为3.3ps.在误码率为10-12的条件下,电路的灵敏度小于20mV.  相似文献   

6.
实现了一种能运用于光传输系统SONET OC-192的低功耗单级分接器,其工作速率高达12Gb/s.该电路采用了特征栅长为0.25μm的TSMC混和信号CMOS工艺.所有的电路都采用了源极耦合逻辑,在抑制共模噪声的同时达到尽可能高的工作速率.该分接器具有利用四分之一速率的正交时钟来实现单级分接的特征,减少了分接器器件,降低了功耗.通过在晶圆测试,该芯片在输入12Gb/s长度为231-1伪随机码流时,分接功能正确.芯片面积为0.9mm×0.9mm,在2.5V单电源供电的情况下的典型功耗是210mW.  相似文献   

7.
实现了一种能运用于光传输系统SONET OC-192的低功耗单级分接器,其工作速率高达12Gb/s.该电路采用了特征栅长为0.25μm的TSMC混和信号CMOS工艺.所有的电路都采用了源极耦合逻辑,在抑制共模噪声的同时达到尽可能高的工作速率.该分接器具有利用四分之一速率的正交时钟来实现单级分接的特征,减少了分接器器件,降低了功耗.通过在晶圆测试,该芯片在输入12Gb/s长度为231-1伪随机码流时,分接功能正确.芯片面积为0.9mm×0.9mm,在2.5V单电源供电的情况下的典型功耗是210mW.  相似文献   

8.
利用太赫兹非对称解复用器(TOAD)对伪随机比特序列(PRBS)归零(RZ)码占空比压缩后经多路延迟叠加来实现速率倍增。实验上将周期为2~7-1、速率为2.5 Gb/s的伪随机RZ码占空比由50%压缩至12.5%后经4路精确延时叠加,保持码型不变,速率提升4倍至10 Gb/s,相对于原伪随机码,保证误码率10~(-9)的功率代价为2 dB。  相似文献   

9.
实现了一种能运用于光传输系统SONET OC-192的低功耗单级分接器,其工作速率高达12Gb/s.该电路采用了特征栅长为0.25μm的TSMC混和信号CMOS工艺.所有的电路都采用了源极耦合逻辑,在抑制共模噪声的同时达到尽可能高的工作速率.该分接器具有利用四分之一速率的正交时钟来实现单级分接的特征,减少了分接器器件,降低了功耗.通过在晶圆测试,该芯片在输入12Gb/s长度为231-1伪随机码流时,分接功能正确.芯片面积为0.9mm×0.9mm,在2.5V单电源供电的情况下的典型功耗是210mW.  相似文献   

10.
采用TSMC公司标准的0.18μm CMOS工艺,结合锁相环和延迟锁相环技术,设计并制作了一个全集成的2.5Gbps/ch并行时钟数据恢复电路.与传统并行数据恢复电路相比,该电路不需要本地参考时钟,并且恢复出的并行数据是位同步的.输入2路并行的231-1 PRBS数据,恢复出的2.5GHz时钟的均方抖动值为2.6ps,恢复出的两路2.5Gb/s数据的均方抖动值分别为3.3ps和3.4ps.  相似文献   

11.
采用TSMC公司标准的0.18μm CMOS工艺,结合锁相环和延迟锁相环技术,设计并制作了一个全集成的2.5Gbps/ch并行时钟数据恢复电路.与传统并行数据恢复电路相比,该电路不需要本地参考时钟,并且恢复出的并行数据是位同步的.输入2路并行的231-1 PRBS数据,恢复出的2.5GHz时钟的均方抖动值为2.6ps,恢复出的两路2.5Gb/s数据的均方抖动值分别为3.3ps和3.4ps.  相似文献   

12.
12Gb/s 0.25μm CMOS数据判决和1∶2数据分接电路   总被引:1,自引:1,他引:0  
采用TSMC 0.25μm CMOS工艺成功实现了用于光纤传输系统的12Gb/s数据判决和1∶2数据分接电路.测试结果显示,在3.3V电源供电情况下,功耗为600mW,其中包括3路输出缓冲.输入信号单端峰峰值为250mV时,该芯片的工作速率超过12Gb/s,相位裕度超过100°.芯片面积为1.07mm×0.99mm.  相似文献   

13.
采用TSMC 0.25μm CMOS工艺成功实现了用于光纤传输系统的12Gb/s数据判决和1∶2数据分接电路.测试结果显示,在3.3V电源供电情况下,功耗为600mW,其中包括3路输出缓冲.输入信号单端峰峰值为250mV时,该芯片的工作速率超过12Gb/s,相位裕度超过100°.芯片面积为1.07mm×0.99mm.  相似文献   

14.
实现了一种能运用于光传输系统SONET OC-192的低功耗单级分接器,其工作速率高达12Gb/s. 该电路采用了特征栅长为0.25μm的TSMC混和信号CMOS工艺. 所有的电路都采用了源极耦合逻辑,在抑制共模噪声的同时达到尽可能高的工作速率. 该分接器具有利用四分之一速率的正交时钟来实现单级分接的特征,减少了分接器器件,降低了功耗. 通过在晶圆测试,该芯片在输入12Gb/s长度为231-1伪随机码流时,分接功能正确. 芯片面积为0.9mm×0.9mm,在2.5V单电源供电的情况下的典型功耗是210mW.  相似文献   

15.
12Gb/s 0.25μm CMOS数据判决和1∶2数据分接电路   总被引:1,自引:1,他引:0  
采用TSMC0.25μmCMOS工艺成功实现了用于光纤传输系统的12Gb/s数据判决和1∶2数据分接电路.测试结果显示,在3.3V电源供电情况下,功耗为600mW,其中包括3路输出缓冲.输入信号单端峰峰值为250mV时,该芯片的工作速率超过12Gb/s,相位裕度超过100°.芯片面积为1.07mm×0.99mm.  相似文献   

16.
设计了一个应用于SFI-5接口的2.5Gb/s/ch数据恢复电路.应用一个延迟锁相环,将数据的眼图中心调整为与参考时钟的上升沿对准,因而同步了并行恢复数据,并降低了误码率.采用TSMC标准的0.18μm CMOS工艺制作了一个单通道的2.5Gb/s/ch数据恢复电路,其面积为0.46mm^2.输入231-1伪随机序列,恢复出2.5Gb/s数据的均方抖动为3.3ps.在误码率为10-12的条件下,电路的灵敏度小于20mV.  相似文献   

17.
潘敏  冯军  杨婧  杨林成 《电子学报》2014,42(8):1630
采用0.18μm CMOS工艺设计实现了一个12.5 Gb/s半速率时钟数据恢复电路(CDR)以及1:2分接器,该CDR及分接器是串行器/解串器(SerDes)接收机中的关键模块,为接收机系统提供6.25GHz的时钟及经二分接后速率降半的6.25Gb/s数据.该电路包括Bang-bang型鉴频鉴相器(PFD)、四级环形压控振荡器(VCO)、V/I转换器、低通滤波器(LPF)、1:2分接器等模块,其中PFD采用一种新型半速率的数据采样时钟型结构,能提高工作速率达到12.5 Gb/s.芯片测试结果显示,在1.8V的工作电压下,VCO中心频率在6.25GHz时,调谐范围约为1GHz;输入12Gb/s、长度为231-1的伪随机数据时,得到6GHz时钟的峰峰抖动为9.12ps,均方根(RMS)抖动为1.9ps;整个系统工作性能良好,二分接器输出数据眼图清晰,电路核心模块功耗为150mW,整体芯片面积0.476×0.538mm2.  相似文献   

18.
据悉,日本NTT已成功开发出目前世界上交换容量最大的光ATM交换机。40Gb/s交换机分A、B两种样机型号:A型规格为2.5Gb/s/路×16路,B型为10Gb/s/路×4路。NTT现正向500Gb/s~1Tb/s光交换机的研制课题进军。  相似文献   

19.
介绍一种用于千兆以太网的1.25Gb/s分接器电路。该电路实现了1路1.25Gb/s高速差分数据到10路125Mb/s低速并行单端数据的分接功能。电路采用树型分接器结构进行设计,包含一个高速1∶2分接器电路和两个低速1∶5分接器电路。芯片采用台湾TSMC的0.25μm混合信号标准CMOS工艺进行设计,后仿真结果表明,所设计电路完全达到了千兆以太网的系统要求,可以工作在1.25Gb/s的数据速率上。  相似文献   

20.
2.5Gb/s SDH/SONET通路终结芯片设计   总被引:1,自引:1,他引:0  
设计了一种2.5Gb/s同步光纤网络SDH/SONET中通路终结处理器芯片.采用双向4路总线流水线结构,77.76MHz的系统时钟,可实时处理2.5Gb/s的SDH/SONET数据,终结处理后输出TUG-3/VTG信号.包括通道告警、信号失效检测、性能监测和通道跟踪等.支持STS-48/STM-16、4路STS-12/STM-4和4路STS-3/STM-1的处理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号