首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 497 毫秒
1.
In this work, we present in-situ monitoring of the growth of bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) thin films as well as Bi2 Te3-Sb2Te3 superlattice using a spectroscopic ellipsometer (SE). Bi2Te3 and Sb2 Te3 films were grown by metalorganic chemical vapor deposition (MOCVD) at 350 C. A44-wavelength ellipsometer with spectral range from 404 nm to 740 nm was used in this work. The optical constants of Bi2 Te3 and Sb2Te3 at growth temperature were determined by fitting a model to the extracted in-situ SE data of optically thick Bi2 Te3 and Sb2 Te3 films. Compared to the optical constants of Bi2 Te3 and Sb2 Te3 at room temperature, significant temperature dependence was observed. Using their optical constants at growth temperature, the in-situ growth of Bi2 Te3 and Sb2 Te3 thin films were modeled and excellent fit between the experimental data and data generated from the best-fit model was obtained. In-situ growth of different Bi2 Te3-Sb2 Te3 superlattices was also monitored and modeled. The growth of Bi2 Te3 and Sb2 Te3 layers can be seen clearly in in-situ SE data. Modeling of in-situ superlattice growth shows perfect superlattice growth with an abrupt interface between the two constituent films.  相似文献   

2.
In this work, nano-structured Bi2Te3 and PbTe thermoelectric materials were synthesized separately via solvothermal, hydrothermal and low-temperature aqueous chemical routes. X-ray diffraction (XRD), field-emission scanning-electron microscopy (FESEM), transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS) were used to analyze the powder products. Results showed that the as-prepared Bi2Te3 samples were all single-phased and consisted of irregular spherical granules with diameters of ∼30 nm whereas the PbTe samples were mainly composed of well-crystallized cubic crystals with average size of approximately 100 nm. Some nanotubes and nanorods were found in Bi2Te3 and PbTe samples, respectively; these were identified as Bi2Te3 nanotubes and PbTe nanorods by EDS analysis. Possible reaction mechanisms for these syntheses are discussed in detail herein.  相似文献   

3.
In this work, bismuth telluride (Bi2Te3) thin films have been fabricated on Bi2Te3/ITO substrates by constant potential electrochemical deposition at room temperature. Bi2Te3 seed layers with different thicknesses (2 nm, 4 nm and 6 nm) were deposited onto ITO substrates using molecular beam epitaxy (MBE) method. The SEM images show that the morphology of Bi2Te3 thin films can be controlled not only by the deposition potential, but also the thickness of seed layer. Moreover, the morphologies of Bi2Te3 thin films with different thickness of seed layers tend to be similar and contain two-layer structure along the vertical direction after prolonged deposition time. Due to the two layers structure, Bi2Te3 thin films have shown different electrical conductivity performances. At room temperature, Bi2Te3 thin films with 4 nm-thick seed layer possess the maximum electrical conductivity value of 617.9 s cm-1.  相似文献   

4.
Phase-change nonvolatile memory cell elements composed of Sb2Te3 chalcogenide have been fabricated by using the focused ion beam method. The contact size between the Sb2Te3 phase change film and electrode film in the cell element is 2826 nm2 (diameter: 60 nm). The thickness of the Sb2Te3 chalcogenide film is 40 nm. The threshold switching current of about 0.1 mA was obtained. A RESET pulse width as short as 5 ns and the SET pulse width as short as 22 ns for Sb2Te3 chalcogenide can be obtained. At least 1000 cycle times with a RESET/SET resistance ratio >30 times is achieved for Sb2Te3 chalcogenide C-RAM cell element.  相似文献   

5.
We studied the effects of deformation and annealing of n-type 90Bi2Te3-5Sb2Te3-5Sb2Se3 thermoelectric compound. Hot-extrusion was conducted to prepare the deformed compound and then this compound was annealed at 400°C for 1–24 hr. When the undoped cast-ingot was extruded, the compound was changed from p-type to n-type due to the electrons generated during the extrusion process. For the compound extruded with SbI3-doped powders, the thermoelectric properties were also varied for the extrusion process. After annealing at 400°C more than 9 hr, the powder-extruded compound was recrystallized. This caused a decrease in carrier concentration and crystallographic anisotropy. In case of the compound extruded at the ratio of 10:1, the Seebeck coefficient α and the electrical resistivity ρ increased due to recrystallization. However, thermal conductivity κ of the compound decreased. This resulted in an increase in the figure-of-merit from 1.23 × 10−3 to 1.63 × 10−3 K−1.  相似文献   

6.
This paper reviews material properties of chalcogenide phase change material Ge2Sb2Te5 under thermal anneal treatments. Stress evolutions of pure Ge2Sb2Te5 films and stacks of Ge2Sb2Te5 integrating with Ti adhesion layers are investigated. Segregation of Te atoms in the Ge2Sb2Te5 film to the interface drives an interaction between Ti and Te atoms and formation of Ti-Te binary phases. The irreversible phase segregation and modification of Ge2Sb2Te5 change the crystallization process, completely suppress the final transformation into otherwise stable hcp phase, and thus impact the ultimate life-cycle of such a phase change based memory cell. Since the adhesion layer is required in cell applications, the optimization of adhesion layer material and thickness may improve the life-cycles and reliability of devices.  相似文献   

7.
Sb2Te3 and Bi2Te3 thin films were grown on SiO2 and BaF2 substrates at room temperature using molecular beam epitaxy. Metallic layers with thicknesses of 0.2?nm were alternately deposited at room temperature, and the films were subsequently annealed at 250°C for 2?h. x-Ray diffraction and energy-filtered transmission electron microscopy (TEM) combined with high-accuracy energy-dispersive x-ray spectrometry revealed stoichiometric films, grain sizes of less than 500?nm, and a texture. High-quality in-plane thermoelectric properties were obtained for Sb2Te3 films at room temperature, i.e., low charge carrier density (2.6?×?1019?cm?3), large thermopower (130???V?K?1), large charge carrier mobility (402?cm2?V?1?s?1), and resulting large power factor (29???W?cm?1?K?2). Bi2Te3 films also showed low charge carrier density (2.7?×?1019?cm?3), moderate thermopower (?153???V?K?1), but very low charge carrier mobility (80?cm2?V?1?s?1), yielding low power factor (8???W?cm?1?K?2). The low mobilities were attributed to Bi-rich grain boundary phases identified by analytical energy-filtered TEM.  相似文献   

8.
The effect on transport properties of the addition of 0.5-5% Tl2Te3 to p-type solid solutions of antimony and bismuth tellurides was studied. It was found that the addition of Tl2Te3 caused a lessening of the increase of hole concentration as low temperatures were approached, resulting in a slower decrease of the Seebeck coefficient with a decrease in temperature. In partial fulfillment of M.Sc. degree, Hebrew University, Jerusalem. Permanent address, Dept. of Inorganic and Analytical Chemistry, Hebrew University, Jerusalem.  相似文献   

9.
The effect of dimensionality and nanostructure on thermoelectric properties in Bi2Te3-based nanomaterials is summarized. Stoichiometric, single-crystalline Bi2Te3 nanowires were prepared by potential-pulsed electrochemical deposition in a nanostructured Al2O3 matrix, yielding transport in the basal plane. Polycrystalline, textured Sb2Te3 and Bi2Te3 thin films were grown at room temperature using molecular beam epitaxy and subsequently annealed at 250°C. Sb2Te3 films revealed low charge carrier density of 2.6?×?1019?cm?3, large thermopower of 130???V?K?1, and large charge carrier mobility of 402?cm2?V?1?s?1. Bi2(Te0.91Se0.09)3 and (Bi0.26Sb0.74)2Te3 nanostructured bulk samples were prepared from as-cast materials by ball milling and subsequent spark plasma sintering, yielding grain sizes of 50?nm and thermal diffusivities reduced by 60%. Structure, chemical composition, as well as electronic and phononic excitations were investigated by x-ray and electron diffraction, nuclear resonance scattering, and analytical energy-filtered transmission electron microscopy. Ab?initio calculations yielded point defect energies, excitation spectra, and band structure. Mechanisms limiting the thermoelectric figure of merit ZT for Bi2Te3 nanomaterials are discussed.  相似文献   

10.
Combining first-principles density functional theory and semiclassical Boltzmann transport, the anisotropic Lorenz function was studied for thermoelectric Bi2Te3/Sb2Te3 superlattices and their bulk constituents. It was found that, already for the bulk materials Bi2Te3 and Sb2Te3, the Lorenz function is not a clear function of charge carrier concentration and temperature. For electron-doped Bi2Te3/Sb2Te3 superlattices, large oscillatory deviations of the Lorenz function from the metallic limit were found even at high charge carrier concentrations. The latter can be referred to quantum well effects, which occur at distinct superlattice periods.  相似文献   

11.
In this work, it is found that unique pillar arrays with nanolayered structure can favorably influence the carrier and phonon transport properties of films. p-(Bi0.5Sb0.5)2Te3 pillar array film with (0 1 5) orientation was successfully achieved by a simple ion-beam-assisted technique at deposition temperature of 400°C, owing to the enhanced mobility of deposited atoms for more sufficient growth along the in-plane direction. The pillar diameter was about 250 nm, and the layered nanostructure was clear, with each layer in the pillar array being <30 nm. The properties of the oriented (Bi0.5Sb0.5)2Te3 pillar array were greatly enhanced in comparison with those of ordinary polycrystalline films synthesized at deposition temperature of 350°C and 250°C. The (Bi0.5Sb0.5)2Te3 pillar array film with (0 1 5) preferred orientation exhibited a thermoelectric dimensionless figure of merit of ZT = 1.25 at room temperature. The unique pillar array with nanolayered structure is the main reason for the observed improvement in the properties of the (Bi0.5Sb0.5)2Te3 film.  相似文献   

12.
Phase change random access memory(PCRAM) is one of the best candidates for next generation nonvolatile memory,and phase change Si2Sb2Te5 material is expected to be a promising material for PCRAM.In the fabrication of phase change random access memories,the etching process is a critical step.In this paper,the etching characteristics of Si2Sb2Te5 films were studied with a CF4/Ar gas mixture using a reactive ion etching system.We observed a monotonic decrease in etch rate with decreasing CF4 concentration,meanwhile,Ar concentration went up and smoother etched surfaces were obtained.It proves that CF4 determines the etch rate while Ar plays an important role in defining the smoothness of the etched surface and sidewall edge acuity.Compared with Ge2Sb2Te5, it is found that Si2Sb2Te5 has a greater etch rate.Etching characteristics of Si2Sb2Te5 as a function of power and pressure were also studied.The smoothest surfaces and most vertical sidewalls were achieved using a CF4/Ar gas mixture ratio of 10/40,a background pressure of 40 mTorr,and power of 200 W.  相似文献   

13.
DRAM is the most commonly used memory due to many advantages such as high speed and easy manufacturability owing to its simple structure, but is volatile. On the other hand, flash memory is non-volatile, but has other disadvantages such as slow speed, short lifetime, and low endurance for repetitive data writing. Compared to DRAM and flash memory, PRAM (Phase-change Random Access Memory), which is a non-volatile memory using a reversible phase change between amorphous and crystalline state, has many advantages such as high speed, high sensing margin, low operating voltage, and is being pursed as a next generation memory. Being able to pattern and etch phase change memory in nanometer scale is essential for the integration of PRAM. This study uses the Nano-Imprint Lithography (NIL) for patterning the PRAM in nanometer scale which is believed to be a future lithography technology that will replace the conventional Photo Lithography. Si wafers coated with SiO2 were used as substrates, and Ge2Sb2Te5 (GST) films with the thicknesses of 100 nm were deposited by RF sputtering. Poly-benzylmethacrylate based polymer patterns were formed using NIL on the surface of GST films, and the GST films were etched using Cl2/Ar plasma in an Oxford ICP (inductively coupled plasma) etcher.  相似文献   

14.
In this work, p-type nanoscale ??soft superlattices?? consisting of multilayer stacks of 25?nm Sb2Te3 on 25?nm (Bi0.2Sb0.8)2Te3 were fabricated by nanoalloying. With this technique, nanoscale layers of the elements Bi, Sb, and Te are deposited by sputtering onto a Si/SiO2 substrate and subsequently annealed to induce interdiffusion and a solid-state reaction to form the final superlattices. Different combinations of annealing temperatures were used in the annealing process. The in-plane electronic properties (Seebeck coefficient, electrical conductivity, charge carrier concentration, and carrier mobility) of these soft superlattices were examined. The cross-plane thermal conductivity was determined using time-domain thermal reflectance (TDTR). Secondary-ion mass spectrometry (SIMS) depth profiles reveal that the nanostructured thin films exhibit high stability against thermal interdiffusion during the annealing process. X-ray patterns of the samples display very strong texture with preferred c-orientation of the crystallites after the heat treatment. Scanning electron microscopy (SEM) cross-section images of the films show distinctly polycrystalline structure with increasing grain size for higher annealing temperatures, as confirmed by x-ray diffraction (XRD) analysis. Very high power factors exceeding 40???W/cm?K2, similar to values for bulk single crystals with comparable compositions, are observed for the soft superlattices. The nanostructure appears to be stable up to 300°C. For a sample annealed at 150°C, a thermal conductivity as low as 0.45?W/mK was determined. Based on different assumptions concerning the degree of anisotropy of the transport properties, a cross-plane figure of merit ZT of 0.6 to 1.9 can be estimated for the thin films annealed at 300°C.  相似文献   

15.
Bi2Te3−ySey thin films with different Se contents ranging from 0.3 to 2.5 were successfully electrodeposited by under potential deposition (UPD) technique onto gold foil substrates from an electrolyte consist of Bi(NO3)3, TeO2, and SeO2 at ambient conditions. The effects of Se content on structural, morphological and optical properties of the products were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and FT-IR spectroscopy, respectively. The XRD analysis revealed that the diffraction peaks positions of Bi2Te3−ySey thin films shifts gradually towards the higher angle side due to replacement of Te by Se atoms in the crystal structure with increasing Se content. The SEM results showed that the particle size of Bi2Te3−ySey thin films decreased as the Se content increased. The optical constants of ternary Bi2Te3−ySey thin films such as refractive index, extinction coefficient, and dielectric constant were obtained from the transmission spectra in the range of 2500–10.000 nm. The direct allowed band gap energies were estimated using Tauc equation and found to increase from 0.210 to 0.282 eV with increasing Se content from 0.3 to 2.5. The dispersion behavior of refractive index was studied by the single oscillator Wemple-DiDomenico model.  相似文献   

16.
Bi2Te3‐based compounds and derivatives are milestone materials in the fields of thermoelectrics (TEs) and topological insulators (TIs). They have highly complex band structures and interesting lattice dynamics, which are favorable for high TE performance as well as strong spin orbit and band inversion underlying topological physics. This review presents rational calculations of properties related to TEs and provides theoretical guidance for improving the TE performance of Bi2Te3‐based materials. Although the band structures of these TE materials have been studied theoretically and experimentally for many years, there remain many controversies on band characteristics, especially the locations of band extrema and the exact values of bandgaps. Here, the key factors in the theoretical investigations of Bi2Te3, Bi2Se3, Sb2Te3, and their solid solutions are reviewed. The phonon spectra and lattice thermal conductivities of Bi2Te3‐based materials are discussed. Electronic and phonon structures and TE transport calculations are discussed and reported in the context of better establishing computational parameters for these V2VI3‐based materials. This review provides a useful guidance for analyzing and improving TE performance of Bi2Te3‐based materials.  相似文献   

17.
Scaling effects in Sesqui-chalcogenides are of major interest to understand and optimize their performance in heavily scaled applications, including topological insulators and phase-change devices. A combined experimental and theoretical study is presented for molecular beam epitaxy-grown films of antimony-telluride  (Sb2Te3). Structural,vibrational, optical, and bonding properties upon varying confinement are studied for thicknesses ranging from 1.3 to 56 nm. In ultrathin films, the low-frequency coherent phonons of A1g1 symmetry are softened compared to the bulk (64.5 cm−1 at 1.3 nm compared to 68 cm−1 at 55.8 nm). A concomitant increase of the high-frequency A1g2 Raman mode is seen. X-ray diffraction analyses unravel an accompanying out of plane stretch by 5%, mainly stemming from an increase in the Te-Te gap. This conclusion is supported by density functional theory slab models, which reveal a significant dependency of chemical bonding on film thickness. Changes in atomic arrangement, vibrational frequencies, and bonding extend over a thickness range much larger than observed for other material classes. The finding of these unexpectedly pronounced thickness-dependent effects in quasi-2D material Sb2Te3 allows tuning of the film properties with thickness. The results are discussed in the context of a novel bond-type, characterized by a competition between electron localization and delocalization.  相似文献   

18.
Interfacial charge transfer has a vital role in tailoring the thermoelectric performance of superlattices (SLs), which, however, is rarely clarified by experiments. Herein, based on epitaxially grown p-type (MnTe)x(Sb2Te3)y superlattice-like films, synergistically optimized thermoelectric parameters of carrier density, carrier mobility, and Seebeck coefficient are achieved by introducing interfacial charge transfer, in which effects of hole injection, modulation doping, and energy filtering are involved. Carrier transport measurements and angle-resolved photoemission spectroscopy (ARPES) characterizations reveal a strong hole injection from the MnTe layer to the Sb2Te3 layer in the SLs, originating from the work function difference between MnTe and Sb2Te3. By reducing the thickness of MnTe less than one monolayer, all electronic transport parameters are synergistically optimized in the quantum-dots (MnTe)x(Sb2Te3)12 superlattice-like films, leading to much improved thermoelectric power factors (PFs). The (MnTe)0.1(Sb2Te3)12 obtains the highest room-temperature PF of 2.50 mWm−1K−2, while the (MnTe)0.25(Sb2Te3)12 possesses the highest PF of 2.79 mWm−1K−2 at 381 K, remarkably superior to the values acquired in binary MnTe and Sb2Te3 films. This research provides valuable guidance on understanding and rationally tailoring the interfacial charge transfer of thermoelectric SLs to further enhance thermoelectric performances.  相似文献   

19.
Two- (2D) and three-dimensional (3D) growth of nanostructured Bi2Te3 films was performed on 4° tilt (100) GaAs substrates using a metalorganic chemical vapor deposition system. To obtain 3D Bi2Te3 crystallites embedded in 2D planar film, we alternately changed the gas flow rate in the reactor. By repeating two steps, 3D Bi2Te3 crystallites embedded in 2D planar Bi2Te3 film were obtained. The thermoelectric properties in terms of the thermal conductivity, electrical conductivity, and Seebeck coefficient were investigated at room temperature. The thermal conductivities of the nanostructured Bi2Te3 films were from 0.63?W/(m?K) to 0.94?W/(m?K) at room temperature, which are low compared with that of film without nanostructure [1.62?W/(m?K)]. The thermal conductivity of the film was effectively decreased with the decrease of size and increase of density of 3D crystallites. The results of this study open up a new method to fabricate nanostructured thermoelectric films with high thermoelectric figure of merit.  相似文献   

20.
Fiber-based electronics are essential components for human-friendly wearable devices due to their flexibility, stretchability, and wearing comfort. Many thermoelectric (TE) fabrics are investigated with diverse materials and manufacturing methods to meet these potential demands. Despite such advancements, applying inorganic TE materials to stretchable platforms remains challenging, constraining their broad adoption in wearable electronics. Herein, a multi-functional and stretchable bismuth telluride (Bi2Te3) TE fabric is fabricated by in situ reduction to optimize the formation of Bi2Te3 nanoparticles (NPs) inside and outside of cotton fabric. Due to the high durability of Bi2Te3 NP networks, the Bi2Te3 TE fabric exhibits excellent electrical reliability under 10,000 cycles of both stretching and compression. Interestingly, intrinsic negative piezoresistance of Bi2Te3 NPs under lateral strain is found, which is caused by the band gap change. Furthermore, the TE unit achieves a power factor of 25.77 µWm−1K−2 with electrical conductivity of 36.7 Scm−1 and a Seebeck coefficient of −83.79 µVK−1 at room temperature. The Bi2Te3 TE fabric is applied to a system that can detect both normal pressure and temperature difference. Balance weight and a finger put on top of the 3 × 3 Bi2Te3 fabric assembly are differentiated through the sensing system in real time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号