首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
为了探明火源横向位置对临界风速的影响规律,运用FDS研究马蹄形断面双车道公路隧道内火源位于隧道中心与侧壁两种场景下的临界风速,并改变火源面积,结合理论分析,与前人矩形断面隧道内的研究结果进行对比。结果表明:单位面积热释放速率一定时,临界风速随火源面积的增大而增大;壁面火的临界风速小于中心火的临界风速,与矩形断面隧道存在差异;且随着火源面积的扩大,壁面火与中心火的临界风速比值趋近于1;不能用“镜面效应”解释马蹄形隧道内壁面火与中心火临界风速差异的原因。  相似文献   

2.
以地铁区间隧道为研究对象,考虑有无列车两种情况,采用火灾动力学模拟软件FDS 5.5.3对不同火源尺寸条件下控制地铁隧道火灾烟气不向上游蔓延的临界风速进行数值模拟。结果表明:火源功率一定时,有无列车情况下火源高度、长度及宽度均对临界风速产生影响。无列车时,临界风速随着火源高度、长度、宽度的增加逐渐减小;有列车时,临界风速随着火源高度、宽度的增加先增大后减小,随着火源长度的增大而递减。  相似文献   

3.
针对不同断面宽度隧道中发生火灾时的火风压变化问题,利用Fluent软件模拟隧道内发生火灾的情况,分析隧道宽度对临界风速的影响以及隧道宽度、火源功率和通风速度对火风压的影响。研究表明,火源功率较小时,宽度越小的隧道,临界风速越大;随着火源功率的增大,临界风速之间的差距减小。火风压中火区绕流阻力和热烟摩阻增量会随着风速的增大而相互作用。导致火风压会先随风速的增大而增大,到达一个峰值后会随着风速增大而减小,最后当通风速度增大到临界风速后趋于稳定的数值。随着隧道宽度的增大,通风速率对火风压的影响逐渐减弱。建立不同宽度隧道在不同通风速率和火源功率下的隧道火风压计算公式,为隧道火灾通风设计提供参考。  相似文献   

4.
通过数值计算,研究顶部开口自然通风隧道火灾火源–竖井间距对烟气流动特征与竖井排烟效率的影响。考虑因素有火源–竖井间距、竖井断面尺寸。结果表明:随着火源–竖井间距的增大,竖井前方来流烟气的质量流量增大,且竖井的排烟效率逐渐降低,竖井内空气卷吸量减少;当火源–竖井间距较小时,竖井更有利于排出更多的热量,竖井后方的温度降低幅度更大,烟气可以被控制在更小的范围内。此外,随着竖井截面尺寸的增大,竖井的排烟效率增加,且增大竖井的宽度更有利于增加竖井的排烟量。因此建议当相邻竖井的间距较大时,可适当增加竖井的截面尺寸和竖井高度。  相似文献   

5.
通过建立三维分析模型,研究了进风口高度、空气通道宽度、出风口风速和外玻1内表面辐射率的变化对内循环双层幕墙热工性能的影响规律。研究结果表明:外玻1外表面、外玻2内表面、内玻内表面、出风口的加权平均温度,随出风口风速和外玻1内表面辐射和的增大而提高;各分析模型U值随出风口风速和外玻璃1内表面辐射率的增大而降低;关闭进风口和出风口,即无机械通风时,各模型热工性能指标较为接近。  相似文献   

6.
基于PyroSim软件,利用数值模拟的方法,建立弧度段圆心角分别为30°、60°、90°、120°、150°、180°的三维隧道模型,变换火源位置,分析弧度对于弧形隧道临界风速变化的影响。弧度段的直径为100 m,火源的热释放速率设置为20MW。在不同弧形的隧道中,当火源点在相同的弧度位置时,不同弧形隧道的临界风速变化不大;当火源位置在0°~90°位置变化时,临界风速随着弧度的增大而增大;当火源位置超过90°时,临界风速随着弧度的增大而减小。  相似文献   

7.
为研究纵向通风对火灾及烟气蔓延的影响,搭建了缩尺寸隧道火灾试验台,分析隧道内拱顶温度及火焰倾斜角随风速和火源功率变化的一般规律。研究结果表明:在同一火源功率作用下,隧道内顶棚温度随着纵向通风速度的增加而降低;火焰的倾斜角随风速的增大而增大;火焰的倾斜程度与火源功率有关;火焰向下游偏斜加大了火焰触及下游可燃物的可能性;实验结果与Kurioka模型符合较好。  相似文献   

8.
搭建了1:10的缩尺寸隧道模型,考虑不同火源功率和纵向风速开展了纵向通风下隧道内重石脑油燃烧的试验研究,测量了隧道内顶棚下方纵向温度分布,并量化了火焰的倾斜角度。结果表明:随着纵向通风风速的增加,隧道内温度整体呈降低趋势,顶棚下方最高温度逐渐减小,进而提出了纵向通风下隧道内重石脑油燃烧时顶棚下方最高温度的估算模型。火焰倾斜角度随纵向风速的增加而呈增加趋势。当纵向风速较低(小于1 m/s)时,随着纵向风速的增加火焰倾斜角度明显增大;当纵向风速较大(大于1 m/s)时,纵向风速对火焰倾斜角度的影响不明显。  相似文献   

9.
利用性能化防火设计的思想,结合工程算例,运用模型实验和数值模拟的方法对公路隧道火灾进行研究。实验验证隧道中存在烟气逆流现象;数值模拟得到不同火源功率下相应的临界风速:火灾功率为5、20、100 MW时,临界风速分别为4.0~4.5、6.0~6.51、0.0~10.5 m/s。研究发现,隧道内的临界风速与燃烧强度有关;当纵向通风速度等于临界风速时,不会发生逆流现象,有利于火源上风区域的人员逃生和消防救援工作的开展。  相似文献   

10.
吕正修  周磊  王旭 《煤气与热力》2023,(3):26-30+40
通过FDS数值模拟研究不同火源功率、火源纵向位置对综合管廊横向温度分布的影响。研究表明:顶棚下方横向温度整体呈火源正上方温度高、两侧温度低的趋势,随着与火源中心距离增大,温度逐渐降低,趋于稳定。火源左侧温度高于右侧。当火源纵向位置一定时,火源功率越大,顶棚下方横向温度越高。相同火源功率下,火源距离管廊左封闭端越近,顶棚下方横向温度越高,这与综合管廊防火门等引起的烟气回流有关。综合考虑火源功率和火源纵向位置等因素,提出综合管廊顶棚下方横向温升预测模型,将模型计算值与数值模拟值进行对比,发现两者吻合度较好,相对误差在可接受范围内。  相似文献   

11.
为兼顾电缆隧道中L型防火隔板的隔热效果和施工安装的便捷性,需确定不同工况下L型防火隔板所需最低高度。为此,利用FDS模拟软件,设置不同侧板高度,针对不同火源功率条件下L型防火隔板对不同电压等级电缆的保护效果进行模拟,分析安装隔板区域的温度变化和烟气扩散。结果表明:火源功率为400,600 kW时,电缆充分燃烧阶段至衰减末期,烟气蔓延速度分别比火源功率为200 kW时约快50%和66%;当110 kV电缆层间距为0.5 m,火源功率为200,400,600 kW时,L型防火隔板侧边最优高度分别为0.20,0.25,0.25 m;当10 kV电缆层间距为0.25 m时,三种火源功率下L型防火隔板侧边最优高度分别为0.100,0.125,0.125 m,隔板上方被保护电缆护套层温度均低于热解温度。研究成果可为不同工况下防火隔板侧板高度设计提供参考。  相似文献   

12.
为研究室外风对走廊中火灾烟气分层特性和自然排烟的影响,在相似原理的基础上开展了1/3 缩尺寸实验。通过改变火源功率、室外风速和外窗尺寸,结合对走廊火灾烟气分层特性和自然排烟效果的判断,找出使分层失效的临界室外风速以及使自然排烟失效的临界室外风速,运用量纲分析和数据拟合的方法分析无量纲火源功率和无量纲临界失效风速之间的关系。研究发现,温度分层无量纲临界失效风速与无量纲火源功率呈现良好的线性关系,温度分层临界失效风速随窗口尺寸减小而增大;自然排烟无量纲临界失效风速与无量纲火源功率呈现显著的对数函数关系,窗口尺寸相同时,火源功率越大,自然排烟临界失效风速越大。  相似文献   

13.
摘 要:为了探究细水雾和纵向通风共同作用下隧道内烟气运动情况,确定配置有细水雾灭火系统的隧道最佳通风策略。采用FDS建立了隧道细水雾数值模拟模型,分别计算了不同纵向风速情况下隧道内温度、有害气体浓度及辐射热通量的变化情况。结果表明:30 MW火灾规模下,烟气层在火源上风向15 m的喷雾区开始出现逐渐层降,烟气层下降至2 m以下;至300 s灭火结束时,上风向150 m内,烟气层全部下降至2 m以下。故火灾发生5 min后,人员疏散距离应大于150 m。对比相同通风风速下(1 m/s)细水雾施加前后辐射热通量变化情况得出,开启细水雾灭火系统25 s后,火源下游5 m处热辐射强度由6 kW/m2降至0。建议开启细水雾灭火系统时尽量保持隧道内1 m/s的通风风速。  相似文献   

14.
为获取更为准确的隧道火灾临界风速算法,考虑火源阻塞比φ1、火源上游处阻塞比φ2均为0、0.23、0.41、0.64,选取了1.6,3.2,9.3 kW三种火源热释放率,通过正交数值试验计算了48种阻塞工况的临界风速值,推导了单纯火源阻塞、单纯火源上游阻塞、火源与上游同时阻塞时临界风速无量纲修正算法。研究结果表明:无论是增加火源处阻塞比还是加大火源上游阻塞比,临界风速值都会逐步减小,火源处阻塞对临界风速的影响更大。火源热释放率增加,临界风速也不断增大。仅火源处阻塞时,临界风速与(1-φ1)2/3成正比。仅火源上游阻塞时,临界风速与(1-φ2)1/3成正比。火源与上游同时阻塞时,临界风速与(1-φ1)2/3(1-φ2)1/3成正比。  相似文献   

15.
High-rise building fire is often influenced by the ambient wind. Study concerning fire behavior in the compartment of high-rise buildings in wind environment is needed for exploring some effective methods used for evaluation of compartment fire smoke movement and control. In this paper, smoke flowing direction and temperature of ventilation-controlled fire in a two-vent compartment are studied when ambient wind blows to the vent at higher altitude. It is found that there is a critical wind speed, above which the direction of smoke movement is dominated by wind rather than by buoyancy. It is also found that ambient wind has a complex influence on smoke temperature in the compartment. When wind speed exceeds another critical value, only one steady state appears in the smoke temperature rising curve. Otherwise three steady states appear. Heat transfer through the compartment walls has great influence on the second critical wind speed.  相似文献   

16.
为探究相对风速对高速列车车厢火灾烟流及温度分布的影响,利用PyroSim建立我国复兴号某型二等座车厢火灾数值计算模型。在着火后3 min关闭外端门条件下,研究车窗破裂状态及不同的相对风速对车厢火灾烟流及温度分布的影响,评估火灾作用下高架桥列车运行的安全性。结果表明:对于人为砸碎应急逃生窗的情况,无论是形成单侧开口还是对流开口,对客室内部整体温度没有明显影响,火灾初期车厢火势主要向逃生窗破裂一侧蔓延;随着相对风速的增加,车厢走道温度降低,烟气抵达两侧客室端门的时间延长;在火灾初期,相对风速的增加对两侧通过台的冷却和排烟作用较为明显,缩小了危险区的范围;50 s前火源点附近很小范围为轻危险区,大致在(-2,2) m,车厢走道大多处在安全区,是人员逃生的最佳时段,综合考虑人员疏散及火势的蔓延情况,提出列车车厢发生火灾后安全运行速度为40 km/h。  相似文献   

17.
A series of fire experiments was conducted using a 1:12 scale model of a shallow urban road tunnel with roof openings to clarify the flow structure of smoke and fresh air during a fire with a longitudinal external wind blowing above the roof openings. The model tunnel consisted of two road tubes separated by a pillar-type median structure. Five fire test cases were conducted by changing the heat release rate as the experimental parameter. When the smoke produced by a fire in the tunnel tube was exhausted by natural ventilation through the roof openings of the tunnel tube, fresh air was sucked in from the roof openings of the opposite tunnel tube. The flow of exhausted smoke and sucked-in fresh air created a complex three-dimensional flow structure inside the tunnel tubes. Stratified smoke that had formed under the ceiling of the tunnel tube was disturbed by the flow of sucked-in fresh air and was diffused on the upstream side of the fire. Compared to the condition without a longitudinal external wind, when a longitudinal external wind blew over the tunnel with the pillar median structure, the smoke spreading distance on the upstream side was longer than that without the external wind due to the diffusion of smoke. On the other hand, the smoke spreading distance on the downstream side of the fire was shorter than that without the external wind due to the improved smoke extraction performance by the Venturi effect of the longitudinal external wind. Furthermore, the smoke spreading distance on the downstream side was nearly constant and independent of the heat release rate of the fire, within the scope of our experimental conditions.  相似文献   

18.
为探究山岭隧道火灾烟气运移特性,采用数值模拟的方法,选取两种典型火源功率(20 MW及50 MW),分析不同纵向风速下火源位置对隧道顶棚下方沿程温度分布规律、烟气运移速率及竖井内烟气质量流量的影响规律.研究结果表明,纵向风速低于3m/s时,不同火源位置时,火源上游沿程温度均随纵向风速增加逐渐降低,而下游沿程温度随纵向风...  相似文献   

19.
摘 要:为了解决特长海底隧道发生火灾时的排烟问题,提出利用服务通道和联络横通道辅助送风的通风方案。利用火灾动力学模拟软件(FDS),建立隧道火灾通风模型,通过研究通风排烟时服务隧道内补风量与横通道开启数量对火灾烟气的控制效果,确定通风系统的技术参数。结果表明:火灾发生时,事故隧道内纵向通风风速2 m/s,同时开启火源上游3 个横通道,并在服务隧道两端各施加1.3 m/s 纵向通风风速,既可将烟气控制在火源一侧,同时不影响人员安全疏散,其控烟效果与通风网络解算结果一致。采用横通道辅助送风的通风方案,控制特长海底隧道内火灾烟气蔓延是具有理论可行性的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号