首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2017,43(18):16611-16621
Effect of core-shell reversal on the nanocomposites of graphene oxide (GO) and ferric oxide (Fe2O3) was studied. Fe2O3@GO core-shell nanosheets were synthesized by sonication method, while the GO@Fe2O3 core-shell nanospheres by employing N,N′-dicyclohexylcarbodimide as the binding agent for the wrapping of GO sheets on pre-formed Fe2O3 nanoparticles (NPs). The phase composition, crystallinity and morphology of the nanocomposites were characterized by FT-IR, TEM, SEM-EDS, VSM, BET surface area study and XRD techniques. The saturation magnetization (Ms) was 1.25 and 0.51 emu g−1 for GO@Fe2O3 and Fe2O3@GO respectively owing to the dependence of magnetic properties on the reversal of core-shell. BET analysis revealed the surface area of 100.32 m2 g−1 and 45.69 m2 g−1 for GO@Fe2O3 and Fe2O3@GO nanocomposites respectively. The fabricated nanocomposites were analyzed as adsorbents for the uptake of Pb (II) ions. The impact of various factors affecting adsorption process such as pH, adsorbent dose, contact time, temperature and metal ion concentration was also investigated. GO@Fe2O3 core-shell nanospheres showed a higher adsorption capacity for Pb (II) ions as compared to Fe2O3@GO core-shell nanosheet with the maximum adsorption capacities (qm) of 303.0 and 125.0 mg g−1 respectively. The equilibrium data was estimated by Freundlich, Langmuir, D-R and Temkin isotherm models. Thermodynamic analysis confirmed the spontaneous and exothermic nature of the adsorption process. The adsorption kinetics was significantly fitted to pseudo-second order model. The results confirmed that core-shell reversal can significantly alter the adsorptive properties of Fe2O3-GO nanocomposite  相似文献   

2.
Yang Si  Tao Ren  Yan Li  Bin Ding  Jianyong Yu 《Carbon》2012,50(14):5176-5185
Hierarchical porous, magnetic Fe3O4@carbon nanofibers (Fe3O4@CNFs) based on polybenzoxazine precursors have been synthesized by a combination of electrospinning and in situ polymerization. The benzoxazine monomers could easily form thermosetting nanofibers by in situ ring-opening polymerization and subsequently be converted into CNFs by carbonization. The resultant fibers with an average diameter of 130 nm are comprised of carbon fibers with embedded Fe3O4 nanocrystals, and could have a high surface area of 1885 m2 g?1 and a porosity of 2.3 cm3 g?1. Quantitative pore size distribution and fractal analysis were used to investigate the hierarchical porous structure using N2 adsorption and synchrotron radiation small-angle X-ray scattering measurements. The role of precursor composition and activation process for the effects of the porous structure is discussed, and a plausible correlation between surface fractal dimension and porous parameter is proposed. The Fe3O4@CNFs exhibit efficient adsorption for organic dyes in water and excellent magnetic separation performance, suggesting their use as a promising adsorbent for water treatment, and also provided new insight into the design and development of a carbon nanomaterial based on a polybenzoxazine precursor.  相似文献   

3.
《Ceramics International》2016,42(3):4228-4237
L-cysteine functionalized Fe3O4 magnetic nanoparticles (Cys–Fe3O4 MNPs) were continuously fabricated by a simple high-gravity reactive precipitation method combined with surface modification through a novel impinging stream-rotating packed bed with the assistance of sonication. The obtained Cys–Fe3O4 MNPs was characterized by XRD, TEM, FTIR, TGA and VSM, and further used for the removal of heavy metal ions from aqueous solution. The influence of pH values, contact time and initial metal concentration on the adsorption efficiency were investigated. The results revealed that the adsorption of Pb(II) and Cd(II) were pH dependent process, and the pH 6.0 was found to be optimum condition. Moreover, the adsorption kinetic for Cys–Fe3O4 MNPs followed the mechanism of the pseudo-second order kinetic model, and their equilibrium data were fitted with the Langmuir isothermal model well. The maximum adsorption capacities calculated from Langmuir equation were 183.5 and 64.35 mg g−1 for Pb(II) and Cd(II) at pH 6.0, respectively. Furthermore, the adsorption and regeneration experiment showed there was about 10% loss in the adsorption capacity of the as-prepared Cys–Fe3O4 MNPs for heavy metal ions after 5 times reuse. All the above results provided a potential method for continuously preparing recyclable adsorbent applied in removing toxic metal ions from wastewater through the technology of process intensification.  相似文献   

4.
《Ceramics International》2017,43(18):16474-16481
Spinel ferrite (Ni, Cu, Co)Fe2O4 was synthesized from the low nickel matte by using a co-precipitation-calcination method for the first time. The influences of the added amount of NiCl2·6H2O, calcination temperature and time on the structure and magnetic properties of the as-prepared ferrites were studied in detail by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Raman spectroscopy, and Vibrating sample magnetometer (VSM). It is indicated that pure (Ni, Cu, Co)Fe2O4 with cubic phase could be obtained under the experimental conditions (NiCl2·6H2O added amount of 3.0: 100 g mL−1, calcination temperature from 800 to 1000 °C and calcination time from 1 to 3 h). With increasing calcination temperature and time, saturation magnetization (MS) of the synthesized (Ni, Cu, Co)Fe2O4 increased and the coercivity (HC) decreased. Under the optimum conditions (i.e. NiCl2·6H2O added amount of 3.0: 100 g mL−1, 1000 °C, 3 h), the MS and HC values of the product were approximately 46.1 emu g−1 and 51.0 Oe, respectively, which were competitive to those of other nickel ferrites synthesized from pure chemical reagents. This method explores a novel pathway for efficient and comprehensive utilization of the low nickel matte.  相似文献   

5.
Activated carbon/CoFe2O4 composite (AC/CFO) was synthesized by a simple one-step refluxing route and was used as adsorbent for the removal of malachite green (MG) dye from water. The structure, morphology and magnetic properties of as-prepared composite were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM). The results indicated that CoFe2O4 particles deposited on the surface of activated carbon in the composite were uniform with the particle size in the range of 14–20 nm. The composite adsorbents exhibited a clearly hysteretic behavior under applied magnetic field, which allowed their magnetic separation from water. Batch experiments were carried out to investigate adsorption isotherms and kinetics of MG onto the composite. The experimental data fitted well with the Langmuir model with a monolayer adsorption capacity of 89.29 mg g?1. The adsorption kinetics was found to follow pseudo-second-order kinetic model. It was indicated that the as-prepared composite could be used as a promising and effective adsorbent for the removal of MG from water.  相似文献   

6.
Aspergillus niger xylanase A (XylA) was immobilized onto Fe3O4-coated chitosan magnetic nanoparticles prepared by the layer-by-layer self-assembly approach. The Fe3O4-coated chitosan magnetic nanoparticles showed a high binding capacity of 162.2 mg  g 1-particles and a recovery activity of 56.5% for XylA. The immobilized XylA showed improved thermostability and storage stability compared with free XylA. The immobilized XylA retained 87.5% activity after seven successive reactions by magnetic separation. Xylotriose and xylohexaose were the main products released from birchwood xylan and wheat bran insoluble xylan by immobilized XylA, respectively.  相似文献   

7.
《Ceramics International》2016,42(5):5650-5658
Copper substituted Fe3O4 nanoparticles (NPs) (CuxFe1−xFe2O4 (0.0≤x≤1.0)) were synthesized by polyol method and the effect of Cu2+ substitution on structural, magnetic and optical properties of Fe3O4 was investigated. X-ray diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), UV–Visible spectroscopy and Vibrating sample magnetometer (VSM) were used to study the physical properties of the products. The room temperature (RT) magnetization (σH) curves revealed the superparamagnetic nature of the products. The extrapolated specific saturation magnetization (σs) decreases from 42.69 emu/g to 14.14 emu/g with increasing Cu content (x). The particle size dependent Langevin fit studies were applied to determine the magnetic particle dimensions (Dmag). The average magnetic particle diameter is about 9.89 nm. The observed magnetic moments of NPs are in range of (0.61–1.77) µB and rather less than 4 µB of bulk Fe3O4 and 1 µB of bulk CuFe2O4. Magnetic anisotropy was assigned as uniaxial and calculated effective anisotropy constants (Keff) are between 10.89×104 Erg/g and 26.95×104 Erg/g. The average value of magnetically inactive layer for CuxFe1−xFe2O4 NPs was calculated as 1.23 nm. The percent diffuse reflectance spectroscopy (DR%) and Kubelka–Munk theory were applied to determine the energy band gap (Eg) of NPs. The extrapolated optical Eg values from Tauc plots are between minimum 1.98 eV to 2.31 eV. From 57Fe Mössbauer spectroscopy data, the variation in line width, isomer splitting, quadrupole splitting and hyperfine magnetic field values on Cu+2 ion substitution have been determined. Although, the Mössbauer spectra for the sample x=0.2 and 0.8 are composed of paramagnetic doublets, ferromagnetic sextets were also formed for other products.  相似文献   

8.
Fe3O4 coated glycine doped polypyrrole magnetic nanocomposite (Fe3O4@gly-PPy NC) was prepared via coating of suspended Fe3O4 nanoparticles with gly-PPy. FE-SEM and HR-TEM images indicated that Fe3O4 nanoparticles were encapsulated by precipitating gly-PPy moieties. Chromium(VI) adsorption followed a Langmuir isotherm with maximum capacity of 238–303 mg/g for a temperature range of 25–45 °C at pH 2. The adsorption process was governed by the ionic interaction and the reduction of Cr(VI) to Cr(III) by the PPy moiety. Results showed that NCs are effective adsorbents for the removal of Cr(VI) from wastewater and can be separated by external magnetic field from the reactor.  相似文献   

9.
Magnetic porous carbons with high surface areas were easily synthesized from a Fe-based metal-organic framework (MOF) by a novel microwave-enhanced high temperature ionothermal method. By choosing a Fe-based MOF called MIL-100(Fe) as both a Fe and C precursor and a porous template, and furfuryl alcohol as a second precursor, a series of γ-Fe2O3/C composites with strong magnetism were prepared in 3 min by a microwave-enhanced high temperature ionothermal method. Structure, morphology and magnetic property, as well as porosity of the products, were carefully studied by powder X-ray diffraction, X-ray photoelectron spectroscopy, the BET surface area method, thermogravimetry, vibrating sample magnetometry, scanning electron microscopy, and high resolution transmission electron microscopy. The obtained γ-Fe2O3/C composites possess both high surface areas and magnetic characteristics. Their adsorption properties were preliminarily tested by the adsorptive removal of methylene blue from aqueous solution. The results suggest that such magnetic carbon composite exhibited high adsorption capacity (303.95 mg g−1) and fast adsorption kinetics, as well as a perfect magnetic separation performance (Ms = 4.12–19.54 emu g−1), for the MB removal from aqueous solution.  相似文献   

10.
Fe3O4 nanoparticles encapsulated in porous carbon fibers (Fe3O4@PCFs) as anode materials in lithium ion batteries are fabricated by a facile single-nozzle electrospinning technique followed by heat treatment. A mixed solution of polyacrylonitrile (PAN) and polystyrene (PS) containing Fe3O4 nanoparticles is utilized to prepare hybrid precursor fibers of Fe3O4@PS/PAN. The resulted porous Fe3O4/carbon hybrid fibers composed of compact carbon shell and Fe3O4-embeded honeycomb-like carbon core are formed due to the thermal decomposition of PS and PAN. The Fe3O4@PCF composite demonstrates an initial reversible capacity of 1015 mAh g−1 with 84.4% capacity retention after 80 cycles at a current density of 0.2 A g−1. This electrode also exhibits superior rate capability with current density increasing from 0.1 to 2.0 A g−1, and capacity retention of 91% after 200 cycles at 2.0 A g−1. The exceptionally high performances are attributed to the high electric conductivity and structural stability of the porous carbon fibers with unique structure, which not only buffers the volume change of Fe3O4 with the internal space, but also acts as high-efficient transport pathways for ions and electrons. Furthermore, the compact carbon shell can promote the formation of stable solid electrolyte interphase on the fiber surface.  相似文献   

11.
This paper describes the sorption of phenol from aqueous solution by using novel magnetic polysulfone (PSF) microcapsules containing Fe3O4 nanoparticles and mixture of trialkyl-phosphine oxides (Cyanex 923) (Cyanex 923/Fe3O4@PSF microcapsules). The preparation of the Cyanex 923/Fe3O4@PSF microcapsules was based on the phase-inversion technique. The prepared microcapsules were characterized by using Fourier Transform Infrared Spectroscopy (FT-IR), Thermal Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX) and Vibrating Sample Magnetometer (VSM). Fe3O4 nanoparticles in the microcapsules provided easier separation via application of external magnetic field. The experiments indicated that phenol could be removed from aqueous solution at a pH range between 3 and 9. The Cyanex 923/Fe3O4@PSF microcapsules prepared with dispersed phase containing 3.35% of Cyanex 923 (by wt.) provided the highest removal. The sorption reached an equilibrium in 120 min and it obeyed the pseudo-second order kinetic model. The non-linear Chi-square (χ2) statistical test showed that Langmuir isotherm model better represented the sorption data in comparison to Freundlich and Redlich–Peterson models. The Langmuir sorption capacity (Qo) and sorption constant (b) were 0.664 mmol/g and 0.855 L/mmol, respectively. The regenerated microcapsules could be used five times with no change in their sorption capacity and magnetic separability.  相似文献   

12.
《Ceramics International》2017,43(17):14807-14812
Praseodymium substituted nano-crystalline Li-Ni spinel ferrites with different Pr3+ contents were synthesized by micro-emulsion method. X-ray diffraction (XRD), scanning electron spectroscopy (SEM) and vibrating sample magnetometery (VSM) techniques were employed to study the impact of substitution of the Pr3+ on the structure, surface morphology and magnetic parameters. XRD confirmed the formation of the single phase spinel ferrites of all compositions of LiNi0.5PrxFe2−xO4 nanocrystallites. The crystallite size determined from XRD data by Scherrer formula was calculated in range from 40 nm to 70 nm. However the nanoparticles size estimated by SEM was found 35–115 nm. The room temperature VSM measurements were carried out in the applied field range from “−10,000 Oe” to “10000” Oe. Saturation magnetization (MS) (41 emu/g) and coercivity (HC) values (156.9 Oe) of LiNi0.5Fe2O4 were improved by the addition of rare earth Pr3+ cations. The value of Hc is low, which is a strong indication of soft ferrites. The synthesized LiNi0.5PrxFe2−xO4 ferrites may be utilized for low core losses on transformers.  相似文献   

13.
《Ceramics International》2015,41(7):8461-8467
Ferrimagnetic Y3Fe5O12 powder was synthesized by a reverse coprecipitation method in order to study its heat generation property in an AC magnetic field. An orthorhombic YFeO3 phase having a small particle size (<100 nm) was obtained for the samples calcined at a low temperature. The maximum heat generation ability in an AC magnetic field was obtained for the Y3Fe5O12 ferrite powder by calcination at 1100 °C. The heat generation ability was reduced for the samples calcined at a higher temperature. The particle growth with the formation of the cubic single phase might influence the heat generation ability. The heat generation ability and the hysteresis loss value were proportional to the cube of the magnetic field (H3), because the coercivity value of the BH curve was proportional to the square of the amplitude of the AC magnetic field (H2). The heat generation ability (W g−1) of the Y3Fe5O12 sample sintered at 1100 °C can be expressed by the equation 2.2×10−4fH3 using the frequency (f/kHz) and the magnetic field (H/kA m−1), which has the highest heat generation ability of the reported magnetic materials. The hysteresis loss value for the BH curve agreed with the heat generation ability of the samples calcined at 1100 °C and lower temperatures.  相似文献   

14.
《Ceramics International》2015,41(7):8843-8848
This paper reported the growth of novel pagoda-like Fe3O4 particles via a facile microemulsion-mediated hydrothermal procedure. The chemical compositions and morphologies of the as-grown Fe3O4 particles were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and field emission scanning electron microscopy (FE-SEM). The morphologies of the as-prepared sample evolved from pagoda-like to pinwheel-like to flower-like shapes with increasing reaction time. In addition, the NaOH concentration and polyethylene glycol (PEG)-2000 had key effects on the formation of the final product. The electrocatalytic properties of the prepared pagoda-like micro-Fe3O4, as catalytic materials for a lithium–air battery, were further evaluated by galvanostatic charge/discharge cycling and electrochemical impedance spectrometry (EIS). Results showed that the cell displayed an initial discharge capacity of 1429 mA h g−1 at a voltage of 1.5–4.5 V at 100 mA g−1.  相似文献   

15.
A Ni–Zn ferrite precursor powder was synthesized by co-precipitation upon adding ammonia to an aqueous solution of the precursor iron, nickel, and zinc nitrate salts. The powder was calcined at a range of temperatures (200–1200 °C) and the crystalline phase evolution was assessed by X-ray diffraction coupled with Rietveld refinement. Intermediate phases (NiFe2O4 and Fe2O3) with increasing crystallinity coexisted in the system up to 1000 °C. The required Ni0.8Zn0.2Fe2O4 phase could only be attained at 1200 °C. The magnetic properties measured using a vibrating sample magnetometer revealed high magnetization saturation level (~59 emu/gm) above 400 °C. The coercivity showed a steady decrease with increasing heat treatment temperature, leading to a change from a hard to soft magnetic state. The BET specific surface area and the SEM morphology were found to be dependent on calcination temperature, atmosphere (air or N2) and on the milling procedure.  相似文献   

16.
《Ceramics International》2017,43(5):4520-4526
In this paper, magnetic porous Ni-modified SiOC(H) ceramic nanocomposites (Ni/SiOC(H)) were successfully prepared via a template-free polymer-derived ceramic route, which involves pyrolysis at 600 °C of nickel-modified allylhydridopolycarbosilane (AHPCS-Ni) precursors synthesized by the reaction of allylhydridopolycarbosilane (AHPCS) with nickel(II)acetylacetonate (Ni(acac)2). The resultant Ni/SiOC(H) nanocomposites are comprised of in-situ formed nanoscaled Ni socialized with small amounts of NiO and nickel silicides embedded in the amorphous SiOC(H) matrix. The materials show ferromagnetic behavior and excellent magnetic properties with the saturation magnetization in the range of 1.71–7.08 emu g−1. Besides, the Ni/SiOC(H) nanocomposites are predominantly mesoporous with a high BET surface area and pore volume in the range of 253–344 and 0.134–0.185 cm3 g−1, respectively. The measured porosity features cause an excellent adsorption capacity towards a template dye acid fuchsin with the adsorption capacity Qt at 10 min of 80.7–85.8 mg g−1 and the Qe at equilibrium of 123.8–129.8 mg g−1.  相似文献   

17.
Nanocrystalline Fe3O4 based catalysts with theoretical particle size of 31–78 nm were synthesized by a facile direct pyrolysis method and employed in high temperature water gas shift reaction. XRD analysis showed that this method led to obtaining the catalysts directly in the active phase with chromium and copper incorporated into magnetite lattice. The results showed that the addition of chromium significantly increases the BET surface area of the pure iron oxide from 14.87 to 35.42 m2 g−1. Among the catalysts evaluated, Fe–Cr–Cu catalyst revealed higher activity compared to commercial catalyst and showed high stability during 10 h time on stream.  相似文献   

18.
Superparamagnetic Fe3O4 nanoparticles were anchored on reduced graphene oxide (RGO) nanosheets by co-precipitation of iron salts in the presence of different amounts of graphene oxide (GO). A pH dependent zeta potential and good aqueous dispersions were observed for the three hybrids of Fe3O4 and RGO. The structure, morphology and microstructure of the hybrids were examined by X-ray diffraction, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, Raman and X-ray photoelectron spectroscopy. TEM images reveal lattice fringes (d311 = 0.26 nm) of Fe3O4 nanoparticles with clear stacked layers of RGO nanosheets. The textural properties including the pore size distribution and loading of Fe3O4 nanoparticles to form Fe3O4–RGO hybrids have been controlled by changing the concentration of GO. An observed maximum (~10 nm) in pore size distribution for the sample with 0.25 mg ml?1 of GO is different from that prepared using 1.0 mg ml?1 GO. The superparamagnetic behavior is also lost in the latter and it exhibits a ferrimagnetic nature. The electrochemical behavior of the hybrids towards chromium ion was assessed and a novel electrode system using cyclic voltammetry for the preparation of an electrochemical sensor platform is proposed. The textural properties seem to influence the electrochemical and magnetic behavior of the hybrids.  相似文献   

19.
《Ceramics International》2017,43(17):14701-14709
(1-x)Bi2Fe4O9- xCoFe2O4 (0.0≤ x ≤1.0) multiferroic nanocomposites were prepared by wet chemical procedures combining reverse chemical co-precipitation and Pechini-type sol–gel techniques followed by mechanical blending process. The XRD and SAED results showed that the diffraction patterns are perfectly indexed to the constituent phases present in composite samples. The crystallite sizes of the constituent phases were 35.4 and 39.4 nm for cobalt and bismuth ferrites, respectively. The characteristic peaks in FT-IR spectra confirmed formation and purity of all specimens. FESEM micrographs revealed the uniform phase distribution with the mean grain size of approximately 40 and 230 nm for CoFe2O4 and Bi2Fe4O9, respectively. TEM micrograph indicated suitable distribution in the as-prepared composite sample. The VSM results revealed that saturation and remnant magnetization increase by increasing CFO content in composites. Based on the results obtained from M-H curves, magnetic properties of composites did not originate only from linear combination of parent phases. The recorded coercivity values of all nanocomposites, for example 1443 Oe for x = 0.4 were higher than those of each parent phase i.e. 708 Oe for CoFe2O4 and 149 Oe for Bi2Fe4O9, showing a noticeable improvement in magnetic properties.  相似文献   

20.
Mullite monoliths with well-defined macropores and mesostructured skeletons have been prepared via the sol–gel process accompanied by phase separation in the presence of poly(ethylene oxide) (PEO). Gelation of Al2O3–SiO2 binary system with chloride salts as an additional precursor has been mediated by propylene oxide (PO) as an acid scavenger, while PEO worked as a phase-separation inducer. The dried gel and that heat-treated at 800 °C are amorphous, and γ-Al2O3 or Si–Al spinel phase nanocrystals are crystallized at 900–1000 °C. After heat-treated at and above 1100 °C for 5 h, the complete crystalline mullite is generated, and the macroporous monoliths in large dimensions of more than 15 mm × 15 mm × 10 mm are obtained. Heat-treatment at 200–1400 °C does not basically spoil the macroporous structure of monoliths, while decreases the macropore size and significantly alters the phase compositions and micro-mesoporous structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号