首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, artificial neural networks (ANNs) have been commonly used for time series forecasting by researchers from various fields. There are some types of ANNs and feed forward neural networks model is one of them. This type has been used to forecast various types of time series in many implementations. In this study, a novel multiplicative seasonal ANN model is proposed to improve forecasting accuracy when time series with both trend and seasonal patterns is forecasted. This neural networks model suggested in this study is the first model proposed in the literature to model time series which contain both trend and seasonal variations. In the proposed approach, the defined neural network model is trained by particle swarm optimization. In the training process, local minimum traps are avoided by using this population based heuristic optimization method. The performance of the proposed approach is examined by using two real seasonal time series. The forecasts obtained from the proposed method are compared to those obtained from other forecasting techniques available in the literature. It is seen that the proposed forecasting model provides high forecasting accuracy.  相似文献   

2.
GM(1,1)残差修正的季节性神经网络预测模型及其应用   总被引:2,自引:0,他引:2  
季节性时间序列具有增长性和波动性的二重趋势。灰色模型GM(1,1)能反映时间序列的总体变化趋势,但不能很好反映其季节性波动变化的具体特征,在模拟与预测季节性时间序列中有明显的局限性。文中介绍了季节性神经网络建立的残差修正模型。通过季节性神经网络模型对GM(1,1)的残差序列进行分析,提取其中的非线性成分作为预测时的补偿项,以进行残差修正,从而形成GMSANN叠合预测模型。实例表明,所建模型具有较好的适应性和预测精度。  相似文献   

3.
In this study, an artificial neural network (ANN) structure is proposed for seasonal time series forecasting. The proposed structure considers the seasonal period in time series in order to determine the number of input and output neurons. The model was tested for four real-world time series. The results found by the proposed ANN were compared with the results of traditional statistical models and other ANN architectures. This comparison shows that the proposed model comes with lower prediction error than other methods. It is shown that the proposed model is especially convenient when the seasonality in time series is strong; however, if the seasonality is weak, different network structures may be more suitable.  相似文献   

4.
电力需求的非线性回归组合神经网络预测研究   总被引:1,自引:1,他引:0       下载免费PDF全文
电力需求同时具有典型的增长性和季节波动性二重趋势,从而显示出复杂的非线性组合特征。为了提高电力需求的预测精度,提出一种新的预测模型——非线性回归组合神经网络模型。该模型有效兼顾了非线性回归分析和人工神经网络的优点,与其他预测模型进行了比较,该模型明显提高了电力需求预测的精度。仿真实验表明了该模型用于电力需求预测的可行性和有效性。同时,该模型也可以作为其他类似季节型时间序列预测建模的有效工具。  相似文献   

5.
Accurate forecasting of inter-urban traffic flow has been one of the most important issues globally in the research on road traffic congestion. Because the information of inter-urban traffic presents a challenging situation, the traffic flow forecasting involves a rather complex nonlinear data pattern, particularly during daily peak periods, traffic flow data reveals cyclic (seasonal) trend. In the recent years, the support vector regression model (SVR) has been widely used to solve nonlinear regression and time series problems. However, the applications of SVR models to deal with cyclic (seasonal) trend time series had not been widely explored. This investigation presents a traffic flow forecasting model that combines the seasonal support vector regression model with chaotic immune algorithm (SSVRCIA), to forecast inter-urban traffic flow. Additionally, a numerical example of traffic flow values from northern Taiwan is used to elucidate the forecasting performance of the proposed SSVRCIA model. The forecasting results indicate that the proposed model yields more accurate forecasting results than the seasonal autoregressive integrated moving average, back-propagation neural network, and seasonal Holt–Winters models. Therefore, the SSVRCIA model is a promising alternative for forecasting traffic flow.  相似文献   

6.
Multiplicative neuron model-based artificial neural networks are one of the artificial neural network types which have been proposed recently and have produced successful forecasting results. Sigmoid activation function was used in multiplicative neuron model-based artificial neural networks in the previous studies. Although artificial neural networks which involve the use of radial basis activation function produce more successful forecasting results, Gaussian activation function has not been used for multiplicative neuron model yet. In this study, rather than using a sigmoid activation function, Gaussian activation function was used in multiplicative neuron model artificial neural network. The weights of artificial neural network and parameters of activation functions were optimized by guaranteed convergence particle swarm optimization. Two major contributions of this study are as follows: the use of Gaussian activation function in multiplicative neuron model for the first time and the optimizing of central and propagation parameters of activation function with the weights of artificial neural network in a single optimization process. The superior forecasting performance of the proposed Gaussian activation function-based multiplicative neuron model artificial neural network was proved by applying it to real-life time series.  相似文献   

7.
《Applied Soft Computing》2007,7(2):585-592
The need for increased accuracies in time series forecasting has motivated the researchers to develop innovative models. In this paper, a new hybrid time series neural network model is proposed that is capable of exploiting the strengths of traditional time series approaches and artificial neural networks (ANNs). The proposed approach consists of an overall modelling framework, which is a combination of the conventional and ANN techniques. The steps involved in the time series analysis, e.g. de-trending and de-seasonalisation, can be carried out before gradually presenting the modified time series data to the ANN. The proposed hybrid approach for time series forecasting is tested using the monthly streamflow data at Colorado River at Lees Ferry, USA. Specifically, results from four time series models of auto-regressive (AR) type and four ANN models are presented. The results obtained in this study suggest that the approach of combining the strengths of the conventional and ANN techniques provides a robust modelling framework capable of capturing the non-linear nature of the complex time series and thus producing more accurate forecasts. Although the proposed hybrid neural network models are applied in hydrology in this study, they have tremendous scope for application in a wide range of areas for achieving increased accuracies in time series forecasting.  相似文献   

8.
基于小波分析技术,将原始非平稳时间序列分解为一层近似系数和多层细节系数,对其分别采用自回归滑动平均模型以及BP神经网络模型,对各层系数进行建模与预测;通过整合各层系数,得到原始时间序列的预测值。运用这种方法对因特网某节点网络流量数据和某地区日最高气温数据进行预测的结果表明,建立在小波分解基础上的这两种方法都能够有效地应用于非平稳时间序列的预测;而小波-BP神经网络的预测方法无论是精度还是计算复杂度方面都要明显优于小波-ARMA方法。  相似文献   

9.
Wei-Chiang Hong 《Neurocomputing》2011,74(12-13):2096-2107
Accurate forecasting of inter-urban traffic flow has been one of the most important issues globally in the research on road traffic congestion. However, the information of inter-urban traffic presents a challenging situation; the traffic flow forecasting involves a rather complex nonlinear data pattern, particularly during daily peak periods, traffic flow data reveals cyclic (seasonal) trend. In the recent years, the support vector regression model (SVR) has been widely used to solve nonlinear regression and time series problems. However, the applications of SVR models to deal with cyclic (seasonal) trend time series have not been widely explored. This investigation presents a traffic flow forecasting model that combines the seasonal support vector regression model with chaotic simulated annealing algorithm (SSVRCSA), to forecast inter-urban traffic flow. Additionally, a numerical example of traffic flow values from northern Taiwan is employed to elucidate the forecasting performance of the proposed SSVRCSA model. The forecasting results indicate that the proposed model yields more accurate forecasting results than the seasonal autoregressive integrated moving average (SARIMA), back-propagation neural network (BPNN) and seasonal Holt-Winters (SHW) models. Therefore, the SSVRCSA model is a promising alternative for forecasting traffic flow.  相似文献   

10.
Seasonal autoregressive integrated moving average (SARIMA) models form one of the most popular and widely used seasonal time series models over the past three decades. However, in several researches it has been argued that they have two basic limitations that detract from their popularity for seasonal time series forecasting tasks. SARIMA models assume that future values of a time series have a linear relationship with current and past values as well as with white noise; therefore, approximations by SARIMA models may not be adequate for complex nonlinear problems. In addition, SARIMA models require a large amount of historical data to produce desired results. However, in real situations, due to uncertainty resulting from the integral environment and rapid development of new technology, future situations must be forecasted using small data sets over a short span of time. Using hybrid models or combining several models has become a common practice to overcome the limitations of single models and improve forecasting accuracy. In this paper, a new hybrid model, which combines the seasonal autoregressive integrated moving average (SARIMA) and computational intelligence techniques such as artificial neural networks and fuzzy models for seasonal time series forecasting is proposed. In the proposed model, these two techniques are applied to simultaneously overcome the linear and data limitations of SARIMA models and yield more accurate results. Empirical results of forecasting two well-known seasonal time series data sets indicate that the proposed model exhibits effectively improved forecasting accuracy, so that it can be used as an appropriate seasonal time series model.  相似文献   

11.
水文时间序列受降雨量的影响,在变化规律上呈现季节性、非线性的特点。传统单一模型结构简单,对于复杂的非线性水文时间序列具有预测精度较低、不能很好捕捉水文时间序列的复合特征的问题。组合预测模型采用多分类器的思想,能够有效地提高预测准确度,然而在模型参数选择方面需要手工调参,花费时间多且不准确。本文提出一种基于SFLA-CNN和LSTM的组合预测模型:通过随机蛙跳算法SFLA对CNN模型进行参数寻优,得到优化后的SFLA-CNN预测模型;之后利用BP神经网络对SFLA-CNN和LSTM模型的预测值进行非线性组合,获得最终预测结果。在江苏省太湖区域的水位预测实验结果表明,该组合模型与现有模型相比,有效地提高了预测准确率,具有更好的泛化能力。  相似文献   

12.
基于神经网络的混沌时间序列建模及预测   总被引:9,自引:0,他引:9  
该文从相空间重构理论出发,讨论了基于神经网络的混沌时间序列建模及预测方法,并以Logistic方程产生的混沌时间序列作为研究对象,采用BP和RBF两种神经网络分别对其进行了仿真分析,实验结果表明:最大Lyapunov指数越大,可预测步长越短;基于RBF网络的混沌时间序列建模及预测效果优于BP网络。  相似文献   

13.
基于周期性建模的时间序列预测方法及电价预测研究   总被引:5,自引:2,他引:3  
时间序列数据广泛存在于人类的生产生活中, 通常具有复杂的非线性动态和一定的周期性. 与传统的时间序列分析方法相比, 基于深度学习的方法更能捕捉数据的深层特性, 对具有复杂非线性的时间序列有较好的建模效果. 为了在神经网络中显式地建模时间序列数据的周期性和趋势性, 本文在循环神经网络的基础上引入了周期损失和趋势损失, 建立了基于周期性建模和多任务学习的时间序列预测模型. 将模型应用到欧洲能源交易所法国市场的能源市场价格预测中, 结果表明周期损失和趋势损失能够提高神经网络的泛化能力, 并提高预测时间序列趋势的精度.  相似文献   

14.

Time series forecasting is one of the most important issues in numerous applications in real life. The objective of this study was to propose a hybrid neural network model based on wavelet transform (WT) and feature extraction for time series forecasting. The motivation of the proposed model, which is called PCA-WCCNN, is to establish a single simplified model with shorter training time and satisfactory forecasting performance. This model combines the principal component analysis (PCA) and WT with artificial neural networks (ANNs). Given a forecasting sequence, order of the original forecasting model is determined firstly. Secondly, the original time series is decomposed into approximation and detail components by employing WT technique. Then, instead of using all the components as inputs, feature inputs are extracted from all the sub-series obtained from the above step. Finally, based on the extracted features and all the sub-series, a famous neural network construction method called cascade-correlation algorithm is applied to train neural network model to learn the dynamics. As an illustration, the proposed model is compared with two classical models and two hybrid models, respectively. They are the traditional cascade-correlation neural network, back-propagation neural network, wavelet-based cascade-correlation network using all the wavelet components as inputs to establish one model (WCCNN) and wavelet-based cascade-correlation network with combination of each sub-series model (WCCNN multi-models). Results obtained from this study indicate that the proposed method improves the accuracy of ANN and can yield better efficiency than other four neural network models.

  相似文献   

15.
Supplying industrial firms with an accurate method of forecasting the production value of the mechanical industry to facilitate decision makers in precise planning is highly desirable. Numerous methods, including the autoregressive integrated-moving average (ARIMA) model and artificial neural networks can make accurate forecasts based on historical data. The seasonal ARIMA (SARIMA) model and artificial neural networks can also handle data involving trends and seasonality. Although neural networks can make predictions, deciding the most appropriate input data, network structure and learning parameters are difficult. Therefore, this article presents a hybrid forecasting method that combines the SARIMA model and neural networks with genetic algorithms. Analytical results generated by the SARIMA model are inputted as the input data of a neural network. Subsequently, the number of neurons in the hidden layer and the number of learning parameters of the neural network architecture are globally optimized using genetic algorithms. This model is subsequently adopted to forecast seasonal time series data of the production value of the mechanical industry in Taiwan. The results presented here provide a valuable reference for decision makers in industry.  相似文献   

16.
基于多尺度分析与神经网络的需水量预测   总被引:1,自引:0,他引:1  
采用小波多尺度分解的方法,将需水量时间序列分解为多个较平稳的细节子序列和一个趋势序列,再利用BP神经网络对分解后的各序列进行预测,把预测后的序列聚合重构,得到预测结果。以新疆石河子地区的需水量为例对该方法作了验证。表明多尺度分析与神经网络耦合预测,比单一BP神经网络预测精度更高,可满足实际需要。  相似文献   

17.
Patra  A.  Das  S.  Mishra  S. N.  Senapati  M. R. 《Neural computing & applications》2017,28(1):101-110

For financial time series, the generation of error bars on the point of prediction is important in order to estimate the corresponding risk. In recent years, optimization techniques-driven artificial intelligence has been used to make time series approaches more systematic and improve forecasting performance. This paper presents a local linear radial basis functional neural network (LLRBFNN) model for classifying finance data from Yahoo Inc. The LLRBFNN model is learned by using the hybrid technique of backpropagation and recursive least square algorithm. The LLRBFNN model uses a local linear model in between the hidden layer and the output layer in contrast to the weights connected from hidden layer to output layer in typical neural network models. The obtained prediction result is compared with multilayer perceptron and radial basis functional neural network with the parameters being trained by gradient descent learning method. The proposed technique provides a lower mean squared error and thus can be considered as superior to other models. The technique is also tested on linear data, i.e., diabetic data, to confirm the validity of the result obtained from the experiment.

  相似文献   

18.
An incorporative framework is proposed in this study for crop yield modelling and forecasting. It is a complementary approach to traditional time series analysis on modelling and forecasting by treating crop yield and associated factors as a non-temporal collection. Statistics are used to identify the highly related factor(s) among many associates to crop yield and then play a key role in data cleaning and a supporting role in data expansion, if necessary, for neural network training and testing. Wheat yield and associated plantation area, rainfall and temperature in Queensland of Australia over 100 years are used to test this incorporative approach. The results show that well-trained multilayer perceptron models can simulate the wheat production through given plantation areas with a mean absolute error (MAE) of ~2%, whereas the third-order polynomial correlation returns an MAE of ~20%. However, statistical analysis plays a key role in identifying the most related factor, detecting outliers, determining the general trend of wheat yield with respect to plantation area and supporting data expansion for neural network training and testing. The combination of these two methods provides both meaningful qualitative and accurate quantitative data analysis and forecasting. This incorporative approach can also be useful in data modelling and forecasting in other applications due to its generic nature.  相似文献   

19.
模糊神经网络和SARIMA模型分别对非线性和线性时间序列有很好的预测能力,但在实际应用中大多数序列并非稳定、单纯线性或非线性的。为了提高预测精度,提出了一种基于T-S模糊神经网络与SARIMA结合的时间序列预测模型。针对悉尼航班乘客收入数据给出了三种混合模型,并与模糊神经网络、支持向量机、SARIMA和BP神经网络四种单独模型进行比较。实验结果表明,从预测精度和参数选择方面来看,所给模型是有效的。  相似文献   

20.
SDAE-LSTM模型在金融时间序列预测中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
针对金融时间序列预测的复杂性和长期依赖性,提出了一种基于深度学习的LSTM神经网络预测模型。利用堆叠去噪自编码从金融时间序列的基本行情数据和技术指标中提取特征,将其作为LSTM神经网络的输入对金融时间序列进行预测;通过LSTM神经网络的长期依赖特性来提高金融时间序列的预测精度。利用股价指数数据,与传统的神经网络的预测结果进行比较,结果表明基于深度学习的LSTM神经网络具有比较高的预测精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号