首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The modification of glassy carbon electrode was achieved by electrochemical reduction of in situ generated diazonium cations in acetonitrile. The in situ generation of 4-nitrophenyl diazonium cations in acetonitrile was investigated by spectroscopic methods. UV-visible spectroscopy revealed slow kinetics for the reaction of 4-nitroaniline with tert-butylnitrite in acetonitrile to form the corresponding diazonium cation. As a result, a coupling reaction, which implies a consumption of the amine and loss of the already formed diazonium cations, was evidenced by 1H NMR spectroscopy. This spectroscopic study allowed the optimization of the in situ diazonium cations generation prior to the modification step. The electrochemical modification of the carbon electrodes with 4-nitrophenyl, 4-bromophenyl and anthraquinone groups was characterized by cyclic voltammetry and the resulting grafted layer were characterized by electrochemical techniques. The cyclic voltammetric behaviour during the electrochemical grafting was very similar to the one observed for an isolated diazonium salt dissolved in acetonitrile. In the case of the anthraquinone-modified electrode, the use of acetonitrile, into which the corresponding amine is soluble but not in aqueous media, allowed for its grafting by the in situ approach. The barrier properties of these grafted layers are similar to those obtained from isolated diazonium salts. Finally, the chemical composition of the grafted layers was determined by X-ray photoelectron spectroscopy and surface coverage in the range 5-7 × 10−10 mol cm−2 was estimated for films grown in our experimental conditions.  相似文献   

2.
The electrochemical reduction of oxygen has been studied on quinone-modified glassy carbon (GC) electrodes as a function of solution pH using the rotating disk electrode (RDE) technique. The surface of GC was grafted with anthraquinone (AQ) and phenanthrenequinone (PQ) by electrochemical reduction of their diazonium derivatives and the oxygen reduction measurements were carried out at different pHs (pH 7-14). The redox-potentials of surface-bound quinones were determined using cyclic voltammetry (CV). The kinetic parameters of oxygen reduction on GC/AQ and GC/PQ electrodes were determined considering a surface redox catalytic cycle model for quinone-modified electrodes.  相似文献   

3.
Ivar Kruusenberg 《Carbon》2009,47(3):651-280
The pH-dependence of oxygen electroreduction has been investigated on multi-walled carbon nanotube (MWCNT) modified glassy carbon (GC) electrodes. Various surfactants were used in the electrode modification: dihexadecyl hydrogen phosphate, cetyltrimethylammonium bromide, sodium dodecyl sulfate and Triton X-100. Electrochemical experiments were carried out in 0.5 M H2SO4 solution, acetate buffer (pH 5), phosphate buffers (pH 6, 7 and 8), borate buffer (pH 10), 0.01 M KOH, 0.1 M KOH and in 1 M KOH solution, using the rotating disk electrode (RDE) method. The oxygen reduction behaviour of MWCNT-modified GC electrodes at different pHs was compared. The RDE results revealed that the half-wave potential (E1/2) of oxygen reduction was higher in solutions of high pH. At lower pHs (pH < 10) the value of E1/2 did not essentially depend on the solution pH. A comparison with previous studies on bare GC showed that the pH-dependence of the half-wave potential of oxygen reduction on MWCNT-modified GC electrodes follows a similar trend to that observed for bare GC.  相似文献   

4.
A glassy carbon (GC) electrode surface was modified with a cadmium pentacyanonitrosylferrate (CdPCNF) film as a novel electrode material. The modification procedure of the GC surface includes two consecutive procedures: (i) the electrodeposition of metallic cadmium on the GC electrode surface from a CdCl2 solution and (ii) the chemical transformation of the deposited cadmium to the CdPCNF films in 0.05 M Na2[Fe(CN)5NO] + 0.5 M KNO3 solution. The modified GC electrode showed a well-defined redox couple due to [CdIIFeIII/II(CN)5NO]0/−1 system. The effects of supporting electrolytes and solution pH were studied on the electrochemical behavior of the modified electrode. The diffusion coefficients of alkali-metal cations in the film (D), the transfer coefficient (α) and the charge transfer rate constant at the modifying film | electrode interface (ks), were calculated in the presence of various alkali-metal cations. The stability of the modified electrode was investigated under various experimental conditions.  相似文献   

5.
The electrochemical modification of the glassy carbon (GC) electrode surface with biphenyl, 1-naphthyl, 2-naphthyl, 4-bromophenyl, 4-decylphenyl and 4-nitrophenyl groups was performed by the diazonium reduction method. The blocking behaviour of aryl films grafted by three different procedures was compared. Oxygen reduction was studied on these modified GC electrodes using the rotating disk electrode (RDE) method. The highest blocking efficiency for O2 reduction was observed for 4-bromophenyl groups. The barrier properties of aryl-modified GC surfaces were also characterised using Fe(CN)63− and dopamine redox probes. Electrochemical measurements were carried out in 0.1 M K2SO4 containing 1 mM K3Fe(CN)6 and in 0.1 M H2SO4 containing 1 mM dopamine using cyclic voltammetry (CV). The blocking action varied significantly depending on the surface modifier used and the solution based redox species studied.  相似文献   

6.
Synthesis of poly(N-methylaniline) (PNMA) on pure iron and Pt electrodes was carried out from aqueous 0.3 M oxalic acid solution containing 0.1 M N-methylaniline (NMA) by potentiodynamic and galvanostatic techniques. It was found that when compared to polyaniline (PAni) and its ring- and N-ethyl-substituted derivatives, PNMA can be electrosynthesized with lower upper scanning potential (upper potential limit, Eupp) of 0.8 V vs. saturated calomel electrode (SCE) on an Fe electrode. PNMA coatings were characterized by electrochemical, scanning electron microscopy (SEM) and FTIR techniques. Linear anodic potentiodynamic polarization results proved that increasing the acidity of the polymerization solution causes more effective protection against corrosion in 0.5 M H2SO4 medium for PNMA. Moreover, PNMA exhibited similar protective properties with PAni under the same corrosion test conditions. Tafel test results reveal that the PNMA coating appears to enhance protection for iron in 0.5 M NaCl and 0.1 M HCl solutions. According to EIS results, the PNMA coating is able to offer protection to Fe electrodes in NaCl compared to that in HCl medium over a long immersion period.  相似文献   

7.
In this study, pyridine, quinoline and phenanthroline molecules were covalently bonded to glassy carbon (GC) electrode surfaces for the first time using the diazonium modification method. Then, the complexation ability of the modified films with ruthenium metal cations was investigated. The derivatization of GC surfaces with heteroaromatic molecules was achieved by electrochemical reduction of the corresponding in situ generated diazonium salts. X-ray photoelectron spectroscopy (XPS) was used to confirm the attachment of heteroaromatic molecules to the GC surfaces and to determine the surface concentration of the films. The barrier properties of the modified GC electrodes were studied in the presence of redox probes such as Fe(CN)63− and Ru(NH3)63+ by cyclic voltammetry. Additionally, the presence of the resulting organometallic films on the surfaces was verified by XPS after the chemical transformation of the characterized ligand films to the ruthenium complex films. The electrochemical behavior of these films in acetonitrile solution was investigated using voltammetric methods, and the surface coverage of the organometallic films was determined from the reversible metal-based Ru(II)/Ru(III) oxidation waves.  相似文献   

8.
Electrochemical behavior of peroxyacetic acid (PAA) and hydrogen peroxide (H2O2) was examined at various metal and carbon electrodes (i.e., Au, Ag, Cu, Pt, Pd, Rh, Ti, W, Hg, Ni, Fe, glassy carbon (GC), and basal-plane pyrolytic graphite (BPG)) in 0.1 M acetate buffer solution (pH 5.5) using potentiostatic (i.e., cyclic voltammetry and rotating disk electrode voltammetry) and galvanostatic techniques. It was found that the electro-reductions of PAA and H2O2 are highly sensitive to electrode material. Both species were found to be electrochemically and separately reduced at Au, Ag, Cu, Pt, Pd, GC, and BPG electrodes. On the other hand, at Fe, Ni, Hg, Rh, Ti, and W electrodes, voltammetric response for the PAA reduction was not obviously observed. The kinetics of electro-reduction of PAA in 0.1 M acetate buffer solution was studied at Au, Ag, and GC electrodes in details, and the relevant kinetic parameters (i.e., the exchange current density, j0, the standard rate constant, k0, and cathodic transfer coefficient, αc) were estimated from the Tafel plots. The cyclic voltammetric reduction peak potentials obtained for the PAA reduction at Au, Ag, and GC electrodes were compared with those calculated using the kinetic and thermodynamic parameters obtained under the same experimental conditions. The measured and calculated reduction peak potentials at each electrode were found to be in agreement with each other, indicating that the evaluated values of kinetic parameters for the reduction of PAA at Au, Ag, and GC electrodes are reasonable.  相似文献   

9.
Unstable acetonitrile | aqueous emulsions generated in situ with ultra-turrax agitation are investigated for applications in dual-phase electrochemistry. Three modes of operation for liquid | liquid aqueous-organic electrochemical processes are demonstrated with no intentionally added electrolyte in the organic phase based on (i) the formation of a water-soluble product in the aqueous phase in the presence of the organic phase, (ii) the formation of a product and ion transfer at the liquid | liquid-electrode triple phase boundary, and (iii) the formation of a water-insoluble product in the aqueous phase which then transfers into the organic phase.A three-electrode electrolysis cell with ultra-turrax agitator is employed and characterised for acetonitrile | aqueous 2 M NaCl two phase electrolyte. Three redox systems are employed in order to quantify the electrolysis cell performance. The one-electron reduction of Ru(NH3)63+ in the aqueous phase is employed to determine the rate of mass transport towards the electrode surface and the effect of the presence of the acetonitrile phase. The one-electron oxidation of n-butylferrocene in acetonitrile is employed to study triple phase boundary processes. Finally, the one-electron reduction of cobalticenium cations in the aqueous phase is employed to demonstrate the product transfer from the electrode surface into the organic phase. Potential applications in biphasic electrosynthesis are discussed.  相似文献   

10.
The electrocatalytic reduction of dioxygen by one mono and four dihydroxy derivatives of 9,10-anthraquinone (AQ) incorporated in polypyrrole (PPy) matrix on glassy carbon electrode has been investigated. The electrochemical behaviour of the modified electrodes was examined in various pH media and both the formal potential of anthraquinones and reduction potential of dioxygen exhibited pH dependence. AQ and PPy composite film showed excellent electrocatalytic performance for the reduction of O2 to H2O2. pH 6.0 was chosen as the most suitable medium to study the electrocatalysis by comparing the peak potential of oxygen reduction and enhancement in peak current for oxygen reduction. The diffusion coefficient values of AQ at the modified electrodes and the number of electrons involved in AQ reduction were evaluated by chronoamperometric and chronocoulometric techniques, respectively. In addition, hydrodynamic voltammetric studies showed the involvement of two electrons in O2 reduction. The mass specific activity of AQ used, the diffusion coefficient of oxygen and the heterogeneous rate constants for the oxygen reduction at the surface of modified electrodes were also determined by rotating disk voltammetry.  相似文献   

11.
采用电化学方法在玻碳(GC)表面电沉积CoNi合金纳米粒子,成功制得碳载CoNi合金纳米电极(CoNi/GC)。SEM结果显示,CoNi粒子呈十八面体结构,粒径约100 nm,分布较均匀。选区电子衍射(SAED)结果显示,CoNi合金纳米粒子为单晶结构。XPS结果显示,金属态的Co(0)和Ni(0)占主导地位。性能测试结果表明:CoNi/GC不但对亚硝酸钠具有较好的催化性能,相对于本体Co和本体Ni,CoNi/GC的起始还原电位(Ei)正移约90 mV,还原峰电流(jp)增大6~14倍。而且对氧还原亦有较好的电催化活性,CoNi/GC的峰电流密度(jp)和动力电流密度(jk)分别是GC电极的1.7和 5.2倍。  相似文献   

12.
Electrochemical modification of glassy carbon (GC) electrode by poly-4-nitroaniline (P4NA), electrochemical reduction of P4NA and applicability of electrode modified in this way for determination of copper(II) (Cu(II)) is reported in this study. Electrochemical surface modification was performed by cyclic voltammetry in the potential range between +0.9 V and +1.4 V vs. Ag/Ag+ (in 10 mM AgNO3) at the scan rate of 100 mV/s by 100 cycles in non-aqueous media. In order to provide electrochemical reduction of nitro groups on the P4NA-modified GC electrode surface (P4NA/GC), the cyclic voltammograms inducing/evidencing the reduction of nitro groups were performed in the potential range between −0.1 V and −0.8 V vs. Ag/AgCl/(sat.KCl) at the scan rate of 100 mV/s. The reduced P4NA/GC surfaces (Reduced-P4NA/GC) were treated with aqueous solution of nitrilotriacetic acid. The sensitivity of GC electrode modified in described way towards Cu(II) was investigated in Britton-Robinson buffer solution, pH 5.0. The potentiometric generic pulse technique was applied as innovative electrochemical method for detection of analytical signal. It was shown that GC electrodes modified in here described way will be suitable for the determination of Cu(II) in technological waste water and/or some other solutions containing Cu(II) ions.  相似文献   

13.
This study uses rotating ring-disk electrode (RRDE) and linear sweep voltammetry (LSV) to characterize oxygen reduction kinetics in alkaline solution on platinum electrodes with various thickness of hydrous oxide (oxyhydroxy) film. Oxyhydroxy films are created on Pt electrodes by pretreatment in 1.0 mol dm−3 KOH at a constant voltage. The pretreatment voltage ranges from −1.2 to 1.0 V and is increased stepwise before each new experimental run to produce seven discreet films. LSV plots show oxyhydroxy film thickness strongly inhibits oxygen reduction and is inversely proportional to RRDE oxygen reduction current ID for LSV voltages ED from −0.1 to −0.46 V, but this trend reverses at ED more negative than −0.46 V so that the worst-performing electrode becomes the best. However, this improvement disappears at around −0.8 V, suggesting this change involves a negatively charged ion, possibly embedded into the metal in the top few atomic layers either interstitially or substitutionally. The 1.0 V-pretreated electrode in the ED range from −0.46 to −0.9 V of highest oxygen reduction current also exhibits the lowest hydrogen peroxide production, with zero H2O2 produced at −0.6 V, indicating the brief presence of the oxyhydroxy film on the Pt surface has strong lingering effects. The post-oxyhydroxy Pt surface is very different than the native Pt for oxygen reduction pathway and efficiency. Reaction order with respect to oxygen is close to 1. The rate constants of the direct O2 to H2O electroreduction reaction are increased with decreasing the potential from −0.2 to −0.6 V, but the O2 to H2O2 electroreduction is contrary to this expectation. The rate constants of H2O2 decomposition on the oxyhydroxy film-covered Pt electrode are near constant around 1 × 10−4 cm s−1 at ED > −0.5 V.  相似文献   

14.
Nanodiamond (ND) powder electrodes were fabricated and the electrochemical properties were investigated in the solution containing nitrite in this article. This electrode exhibits substantial catalytic ability toward the oxidation of nitrite anions. The electrochemical oxidation mechanism of nitrite on the ND powder electrode is discussed. The oxidation of NaNO2 is a two-electron transfer process. The electrode reaction rate constant k is estimated to be 2.013 × 10−4 cm/s and (1 − α)nα is 0.1643. The peak current increases linearly with the rising of the concentration of NaNO2.  相似文献   

15.
We report on direct electron transfer (DET) reactions of bilirubin oxidase at multi-walled carbon nanotube-(MWCNT) modified gold electrodes. MWCNTs are very suitable for protein immobilisation and provide surface groups that can be used for the stable fixation on electrodes. They can also effectively replace the natural substrate of BOD - bilirubin, the electron donor for oxygen reduction. The bioelectrocatalytic oxygen reduction was recorded using linear sweep voltammetry (LSV) with BOD covalently linked to the nanotubes. The start potential of the bioelectrocatalytic oxygen reduction at pH 7 and a scan rate of 10 mV/s was determined to be 485 ± 10 mV vs. Ag/AgCl, 1 M KCl (720 mV vs. SHE). Current densities up to 500 μA/cm2 were detected in an air-saturated buffer at room temperature (25 ± 5 °C). Experiments with a rotating disk electrode (RDE) indicate a diffusion controlled electrode reaction. A ks value in the range of 80-100 s−1 could be estimated.The DET could also be observed directly by the redox conversion of a copper centre of BOD under anaerobic conditions. A peak pair with a formal potential of 680 ± 10 mV vs. SHE was found. The T1 site is probably addressed by the electrode as indicated by several experimental studies.  相似文献   

16.
The electrochemical reduction of benzyl halides PhCH2X (X = Cl, Br and I) has been investigated at Ag and glassy carbon (GC) electrodes in CH3CN + 0.1 M Et4NClO4. At both electrodes reduction of PhCH2X involves irreversible electron transfer concerted with breaking of the carbon-halogen bond. All three halides exhibit a single 2e reduction peak at GC, whereas up to three peaks can be observed at the Ag electrode. Silver exhibits remarkable catalytic properties for the reduction process, which is positively shifted by 0.45-0.72 V with respect to GC. The mechanism of reduction of the organic halides at Ag involves adsorption of both the starting reagents and their reduction products. Adsorption of PhCH2Cl and PhCH2Br is weak and slow, whereas PhCH2I is more rapidly and strongly adsorbed, so that two distinct peaks can be observed for the reduction of the dissolved and adsorbed molecules. Controlled-potential electrolyses at Ag have shown that the process may be directed to the production of bibenzyl or toluene, depending on the applied potential.  相似文献   

17.
The reciprocal influence of the phenylsubstituents and diazonium groups allows to monitor the diazonium reactivity and to electrochemically detect the grafting reaction. Extended understanding concerning the grafting of para substituted tetrafluoroborate aryl diazonium salts p-(R-Ph-N2+, BF4) was obtained by studying comparatively four compounds (R = NO2, NEt2, NHPh, NPh2) by electrochemistry. For R = NEt2, the grafted molecules showed no reversible electroactivity whereas for the aminophenyl substituents, the first oxidation process induced chemical modification of the deposited layers before being totally reversible. The compound with electron withdrawing group (NO2) was the only one able to create spontaneous covalent bounding with the glassy carbon electrode (GCE). We observed that the substituent directly acts upon the diazonium reactivity. This effect can be directly monitored through the potential onset value of the diazonium reduction. In addition, the elimination of the diazonium group during electrografting induces a cathodic shift of the electroactivity of the aminodiphenyl and aminotriphenyl groups covalently attached onto the carbon electrode surface. The shift between these electrochemical values may be considered as a signature of the grafting reaction.  相似文献   

18.
The electrochemical reduction of oxygen on thin-film platinum electrodes in 0.1 M HClO4 and 0.05 M H2SO4 solutions has been investigated using the rotating disk electrode (RDE) method. Thin films of Pt (0.25-20 nm thick) were prepared by vacuum evaporation onto glassy carbon substrate. The surface morphology of Pt films was examined by transmission electron microscopy (TEM). The specific activity of O2 reduction was higher in HClO4 and decreased with decreasing film thickness. In H2SO4, the specific activity was lower and appeared to be independent of the Pt loading. The values of Tafel slopes close to −120 mV dec−1 in high current density range and −60 mV dec−1 in low current density range were obtained for all electrodes in both solutions, indicating that the mechanism of O2 reduction is the same for thin-film electrodes as for bulk Pt. The number of electrons transferred per O2 molecule was close to four for all thin Pt films studied.  相似文献   

19.
The stability of one material, Ti/CuxCo3−xO4, as anode and also cathode was investigated for electrolysis of alkaline aqueous solution. The electrodes were prepared by thermal decomposition method with x varied from 0 to 1.5. The accelerated life test illustrated that the electrodes with x = 0.3 nominally showed the best performance, with a total service life of 1080 h recorded in 1 M NaOH solution under alternating current direction at 1 A cm−2 and 35 °C. The effects of copper content in electrode coating were examined in terms of electrode stability, surface morphology, coating resistivity and coating compositions. The presence of Cu in the spinel structure of Co3O4 could significantly enhance the electrochemical and physicochemical properties. The trends of crystallographic properties and surface morphology have been analyzed systemically before, during and after the electrodes were employed in alkaline electrolysis. The oxygen evolution would lead to the consumption of the coating material and the progressive cracking of the coating. Along with hydrogen evolution, cobalt oxide could be reduced to metal Co and Co(OH)2 with particle sizes changed to smaller values in crystal and/or amorphous form at the cathode. The formation of Co is the key process for this electrode to serve as both anode and cathode. It is also the main reason leading to the eventual failure of the electrodes.  相似文献   

20.
The electrochemical reduction of oxygen on thin Pd films with a nominal thickness of 0.25-10 nm on polycrystalline Au substrate (Pd/Au) was studied. The Pd films were prepared by electron beam evaporation and oxygen reduction was studied in 0.1 M HClO4 and 0.05 M H2SO4 solutions using the rotating disk electrode (RDE) method. The surface morphology of Pd overlayers was examined by scanning tunnelling microscopy (STM). O2 reduction predominantly proceeds through 4e pathway on all Pd/Au electrodes. The specific activity (SA) of oxygen reduction was lower in H2SO4 solution and decreased slightly with decreasing the Pd film thickness. In HClO4, the SA was higher and not significantly dependent on the film thickness. The Tafel slope values close to −60 mV at low current densities and −120 mV at high current densities were found for all electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号