首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《硬质合金》2016,(1):19-23
关于纳米WC/Co复合粉制备技术的研究报道有很多,但实现产业化的技术方案较少。本文在自主研发设计的离子交换系统、高温流态化床等设备平台上,以偏钨酸铵(AMT)、碳酸钴(Co CO3)、乙二胺四乙酸(C10H16N2O8)为原料,首先采用离子交换、溶液复合法得到一定配比的钨钴复合溶液,然后进行喷雾干燥、煅烧得到前驱体钨钴复合氧化物,最后在高温流态化床中连续还原-碳化-调碳后得到不同钴含量的纳米WC-Co复合粉末,采用SEM、XRD等分析方法对粉末进行形貌观察及物相分析。制备所得WC/Co复合粉质量稳定,具有杂质含量低、碳化率高、游离碳含量低的特点,其中WC的亚晶尺寸小于100 nm,表明所开发的产业化技术切实可行。  相似文献   

2.
以偏钨酸铵、可溶钴盐、有机碳为原料,经喷雾转化、煅烧、低温还原碳化制备WC-Co复合粉。对前驱体、复合粉物相组成、WC晶粒度、微观形貌、平均粒度及分布进行研究。结果表明:复合粉由WC和Co两相组成,WC晶粒度约为60 nm;前驱体粉末呈空壳球形结构,部分颗粒破裂;经煅烧后,形貌未发生明显变化;再经还原碳化处理,颗粒表面产生大量孔隙,形貌与前驱体相似,具有很好的形貌结构遗传特性;复合粉平均粒度比前驱体略有减小且粒度分布更窄;溶液浓度、给料速度越大,离心转速越小,则平均粒度越大;进气温度对粒度影响很小。  相似文献   

3.
研究了纳米晶WC-10Co硬质合金的力学性能和显著结构。这种纳米晶WC-10Co硬质合金粉末是将含有偏钨酸铵(AMT)和硝酸钴的溶液喷雾干燥制得的纳米晶前驱体粉末再经过还原和碳化制备的。直径约100nm的WC粉末与Co炽结相混合均匀,并在1毫乇压力和1375℃下进行烧结。为了与纳米晶料WC-10Co的显微结构和力学性能相比较,将直径范围为0.57-4μm的工业用WC粉末与Co粉混合,并在与纳米晶粉末相同的条件下进行烧结,在纳米晶WC-10Co硬质合金中加入不同量的TaC、Cr3C2和VC作为晶粒长大抑制剂。为研究WC-10Co硬质合金中Co粘结相的显微结构,以WC-10Co硬质合金烧结温度下制备了Co-W-C合金。WC-10Co硬质合金随着WC粒度的减小而增加的硬度因而符合霍尔-佩奇型关系式。WC-10Co硬质合金的断裂韧性随着Co粘结相的HCP(密排六方相)/FCC(面心六方相)比的增大(由于HCP/FCC相引起的)而提高。  相似文献   

4.
以钨酸钠为钨源,酚醛树脂(PF)为碳源,采用溶胶-凝胶法制备碳化钨(WC).通过紫外吸收光谱(UV)、X射线衍射(XRD)、扫描电镜(SEM)及透射电镜(TEM)对样品进行表征.结果表明:钨酸溶胶在有机溶剂中受热时会析出对WC颗粒大小、均匀性及碳化温度起决定性影响的H2W3O10;前驱体中未含有H2W3O10时,在900℃碳化l~2 h,能制备出粒径为30~60 nm,且沿(100)择优取向、晶面间距为0.25 nm的WC.  相似文献   

5.
本文通过实验探索了水溶化学法制备纳米WC/C0复合粉工艺,研究了影响喷雾转换、锻烧、碳化和调碳的工艺因素,找到了满足纳米WC/Co复合粉制备的工艺参数。在Kear等人的经典合成技术中,碳化钨钴纳米复合材料是由喷雾转化水溶液的化学计量量的水溶性钨源和钴源,然后用流化床通氢将钨钴氧化物还原为金属钨和钴,之后在一个充满CO/CO2的气体环境中将金属钨和钴碳化成纳米WUCo复合粉末。本研究不同于Kear等人的处理方法,涉及的WC/C0使用水溶性溶液钨、钴和碳前躯体加工的纳米复合材料,大量的WGCo纳米复合粉体是将钨、钴和碳在分子级水平上混合制备成一个复杂的前驱体粉末的独特方案,前驱体粉末在煅烧炉充满惰性气体约100撕00cC的温度下转化成一个含有W-Co-C-0的预复合粉粉末,随后在碳化炉低于1000℃的温度下碳化。实验表明,水溶化学法生产的纳米WC/Co复合粉较常规方法,具有晶粒细而均匀、流动性好等特点,更适于高性能硬质合金的生产。  相似文献   

6.
《硬质合金》2018,(5):305-314
以偏钨酸铵、醋酸钴及葡萄糖为原料,采用短流程工艺,通过喷雾转化法制备出含W、Co等元素的前驱体粉末、煅烧制备W、Co的氧化粉、最后以低温连续还原碳化法制备出WC晶粒尺寸约为260 nm的WC-Co复合粉。研究了短流程工艺3个关键步骤的参数变化对粉末形貌、粒径、氧含量、总碳和化合碳含量等特征的影响。结果表明,当溶液浓度为60%、进料速度为2 000 mL/min、离心转速为12 000 r/min时,制备的前驱体粉末粒度分布均匀,相互粘结的现象较少。温度为550℃、保温时间20 min时煅烧前驱体制备出的氧化物粉末粒度较均匀。当低温连续还原碳化温度为900℃、氢气流量为1.3 m3/h、保温时间为60 min时,可获得WC晶粒细小均匀、总碳和化合碳较为一致且接近于理论碳含量的WC-Co复合粉。  相似文献   

7.
针对传统还原-碳化工艺中WC粉颗粒的长大问题,采用碳氢协同还原-碳化法制备纳米级球形WC粉,研究前驱体配碳比和反应温度对WC粉性能的影响。结果表明,WC的碳含量与前驱体的配碳比密切相关,最佳配碳比(即n(C)/n(W)值)为3.6。W向WC的转变具有结构遗传性,WC的平均粒径与还原温度和碳化温度密切相关。随着还原温度由680 ℃升高至800 ℃,还原水蒸气与碳反应生成CO和H2,显著降低体系中水蒸气的分压,从而抑制中间产物W颗粒的挥发-沉积长大,WC的平均粒径随还原温度升高而减小。碳化过程中的高温促进WC颗粒的晶界迁移和纳米W颗粒之间的烧结合并长大,WC的平均粒径随碳化温度的升高而增大。n(C)/n(W)为3.6的前驱体粉末经800 ℃还原和1100 ℃碳化后,得到平均粒径为87.3 nm的球形WC粉。  相似文献   

8.
针对传统还原-碳化工艺中WC粉颗粒长大的问题,采用碳氢协同还原-碳化法制备纳米级球形WC粉,研究了前驱体配碳比和反应温度对WC粉性能的影响。结果表明,WC粉的碳含量与前驱体的配碳比密切相关,最佳配碳比(即n(C)/n(W)值)为3.6。W转变为WC具有结构遗传性,WC粉的平均粒径与还原温度和碳化温度密切相关。随着还原温度由680℃升高至800℃,还原水蒸气与碳反应生成CO和H_2,显著降低体系中水蒸气的分压,从而抑制中间产物W颗粒的挥发-沉积长大,WC粉的平均粒径随还原温度升高而减小。碳化过程中的高温促进WC颗粒的晶界迁移和纳米W颗粒之间的烧结合并长大,WC粉的平均粒径随碳化温度的升高而增大。n(C)/n(W)为3.6的前驱体粉末经800℃还原和1100℃碳化后,得到平均粒径为87.3 nm的球形WC粉。  相似文献   

9.
研究了两步碳化工艺对氢还原/碳化制备的纳米WC粉末及其WC-Co合金性能的影响。结果表明,WC粉末的晶粒聚集和异常粗大颗粒主要是由于碳化初期钨颗粒因烧结合并增粗,而钨粉碳化不完全主要是由于碳化后期的温度偏低,利用先低温碳化后高温碳化的两步碳化工艺不仅能够有效抑制纳米颗粒烧结合并增粗,而且可以使钨粉充分碳化,得到颗粒细小、均匀,W2C含量极少的WC粉末;采用1120℃碳化加1180℃碳化的两步碳化工艺制备出的138 nm的WC粉末,W2C含量少于0.5%(质量分数),以其为原料制备的WC-Co烧结体显微组织结构均匀,为超细晶硬质合金,综合性能优良,洛氏硬度HRA高达93.7,抗弯强度高达4380 MPa。  相似文献   

10.
以钨酸铵溶液为原料,采用超声喷雾干燥法制备了超微钨粉。研究了该方法中钨酸铵浓度对超微钨粉形貌的影响。结果表明,当溶液中钨酸铵的浓度为10%时,得到了球形度很好的非完全结晶的前驱体。当钨酸铵浓度达25%时,得到了层片状的晶态前驱体。钨酸铵溶液浓度对干燥时晶体生长速度具有重要的影响。分别采用这2种前驱体在630℃,保温30min和氢气流莆4L/min条仲下能够完全还原,得到超微α—W粉。所制得的钨粉形貌完全遗传了其前驱体的形貌,分别得到球状和层状钨粉。球状钨粉由纳米颗粒聚集而成。片层状钨粉的厚度在1mm以下。  相似文献   

11.
钴盐沉淀法制备硬质合金混合料新工艺研究   总被引:1,自引:1,他引:0  
以醋酸钴、WC粉和氨水为原料,以蒸馏水作为反应溶剂进行化学反应,反应物经氢气还原制得钨钴混合料,最后制得硬质合金,并与传统工艺制得的合金进行性能比较。结果表明,XRD图谱显示实验反应生成物是钴氧化物前驱体,面分析图谱显示新工艺制备的混合料元素分布更均匀,细碎WC颗粒更少,新工艺制备的硬质合金密度及硬度变化不大,强度提高了318N/mm2,韧性提高了0.2N·m/cm2。  相似文献   

12.
为发挥氧化石墨烯在热喷涂碳化钨耐磨涂层中自润滑性能,提高氧化石墨烯与热喷涂粉末的相容性,将偏钨酸铵作为钨的前驱体与氧化石墨烯混合,采用还原技术在氧化石墨烯表面原位生长纳米尺度碳化钨颗粒。借助XRD和SEM研究偏钨酸铵与氧化石墨烯不同摩尔配比、不同升温速率、不同反应温度等条件下获得样品的物相组成及表面形貌。结果表明:氧化石墨烯表面原位生长纳米碳化钨所需原料氧化石墨烯与偏钨酸铵最佳配比优化后对应为n(W)∶n(C)=1∶5,最佳升温速率为70℃/min,最佳还原温度为700℃,该条件下获得样品形貌为纳米片层氧化石墨烯表面弥散分布有尺度均匀的纳米碳化钨颗粒。  相似文献   

13.
介绍了一种一步法制备碳化钨(WC)的新方法,以钨酸钠为原料,通过碳纳米管模板和载体制备小颗粒钨酸,制备出钨酸和碳黑的混合物作为反应前驱体,分别以H2和N2作为还原及保护气体合成WC,当合成温度高于800℃,反应前反应管内抽成真空,并在反应管内通入氢气和氮气流时,WO3首先被还原为W,接下来W被还原为W2C,最后,W2C被还原为最终产物WC。实验过程中通过调节气氛和温度2个重要反应条件,探索出了控制WC形貌及大量制备的方法,为WC的低成本及可控制备提供了新的途径。  相似文献   

14.
介绍了一种一步法制备碳化钨(WC)的新方法,以钨酸钠为原料,通过碳纳米管模板和载体制备小颗粒钨酸,制备出钨酸和碳黑的混合物作为反应前驱体,分别以H2和N2作为还原及保护气体合成WC,当合成温度高于800℃,反应前反应管内抽成真空,并在反应管内通入氢气和氮气流时,WO3首先被还原为W,接下来W被还原为W2C,最后,W2C被还原为最终产物WC。实验过程中通过调节气氛和温度2个重要反应条件,探索出了控制WC形貌及大量制备的方法,为WC的低成本及可控制备提供了新的途径。  相似文献   

15.
无颗粒型银导电墨水因其具有较高的稳定性,较低的后处理温度,在印制电子领域中应用广泛。根据银前驱体的选择不同,综述了以新癸酸银、柠檬酸银、草酸银、碳酸银、醋酸银、硝酸银、酒石酸银为前驱体的无颗粒型银导电墨水的研究情况。此外,对墨水作喷墨打印时基板的选择和处理、墨水印制图案的微观组织结构调控及后处理方法、墨水的应用、以及对无颗粒型银导电墨水的前景进行了介绍。  相似文献   

16.
本研究使用细菌纤维素为前驱体制备碳气凝胶(CA),以其作为载体,通过浸渍和高温处理制得了柔性W-O-C/CA和WC/CA复合电极材料,研究了制备工艺对材料形貌、物相和对甲醇电催化氧化性能的影响。随着高温处理温度的上升和保温时间的延长,物相变化为:钨前驱体→钨氧化物(WO3、WO3-x、WO2)→W→WCx→WC。在700℃保温2 h制得的柔性电极,负载颗粒主要物相为缺氧钨氧化物(WO3-x)、WO2和少量碳化钨(WC),具有良好的甲醇电催化性能和长循环稳定性,0.8 V下电流密度为76.5 mA·cm-2,1000次循环后峰电流密度保持初始值的88%,有望用于便携式或微型甲醇燃料电池阳极。  相似文献   

17.
《硬质合金》2020,(1):19-29
硬质合金因具有优异的耐磨性和耐腐蚀性能等被广泛应用。3D打印,又名"增材制造",为一种新兴的先进成型技术,已经在航空航天、生物材料等领域得到应用。然而,在难熔金属及其碳化物,如硬质合金等领域还处于起步阶段。一些企业及科研机构正在致力于或关注3D打印硬质合金的研发,但是迄今为止,仍然没有实质性的进展——即没有一种3D打印方法可以全面解决硬质合金打印产品的表面光洁度差、微观孔隙度高和强度低等问题。本文围绕近些年国内外3D打印硬质合金的主要方法:激光选区烧结/熔覆(SLS/SLM)、熔丝制造(FFF)、粘接相喷射(BJP)和数字光处理(DLP)等,对各种3D打印方法的特点、存在的问题等进行了整理、讨论和分析,并对3D打印硬质合金技术的发展进行了展望。  相似文献   

18.
创新 《硬质合金》1995,12(3):191-192
1原料制备1.1钨、碳化钨、氧化钨粉的新生产工乙以色列METEK金属工艺有限公司开发了一项可用化学、冶炼工艺从含钨废料中回收W、WC、WO3和H2WO4的新生产工艺,这种工艺据称可以获得高纯度并能极好地控制这些产品的粒度分布。这种工艺能处理各种固体废料,如硬质合金涂层合金或末涂层合金、有或没有焊接残留物的废料、高比重合金和其他W-Cu之类的合金、钨和碳化钨粉地面料、研磨残料,加惜和脱蜡的压块也可采用此工艺处理。这种回收铭的新方法首先是采用一种能产生粒度很细的纯钨酸的化学工艺,然后采用锻烧,还原和碳化的传统粉末冶…  相似文献   

19.
以钨粉为钨源,酚醛树脂(PF)为碳源,采用溶胶-凝胶法制备碳化钨(WC)。通过X射线衍射、扫描电镜对样品进行表征。从热力学系统分析W氧化物的还原过程,WC的合成过程,以及碳化时间和碳化温度对产物的影响。结果表明:钨的化合物主要是由H2还原成钨单质,其形成过程为WO3→WO2.9→WO2.72→WO2→W;WC的形成过程为W2C→WC→W2C。  相似文献   

20.
文中提出了3D打印快速一体化制造枪钻的方法,进行了中碳钢钻柄、低合金钢钻杆和钨钴硬质合金钻头组成的复合材料枪钻毛坯3D打印工艺试验研究. 采用SEM观测分析了3D打印复合材料枪钻毛坯低合金钢/中碳钢界面微观形貌和组织结构,采用EDS, XRD对枪钻毛坯低合金钢/中碳钢元素分布、界面相成分进行了测试与分析;测试分析了枪钻毛坯低合金钢/中碳钢界面缺陷、显微硬度、抗拉强度等;通过测试与分析复合材料枪钻毛坯界面的微观组织和性能,对其界面进行了表征. 结果表明,3D打印复合材料枪钻毛坯界面性能优于焊接枪钻界面,3D打印快速一体化制造枪钻的方法可行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号