首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 236 毫秒
1.
发现了一种PTFE(聚四氟乙烯)催化剂,在其作用下,实现了在2 MPa的氮气压力下Si Nh4Cl混合粉末燃烧合成Si3N4.结果表明PTFE有效的促进了反应,产物表层的Si粉也实现了完全氮化,且合成产物中α-Si3N4的含量随着反应剂中PTFE含量的增加表现出规律性的变化.当PTFE的添加量为4%(质量分数,下同)时,可以制备出α相含量为77.7%的粒度均匀的等轴状Si3N4粉末;产物中心部位含有少量残余Si,但经过后续热处理,可以实现完全氮化.分析了产物中不同部位相组成和形貌产生差异的原因,并对PTFE作用下燃烧合成Si3N4的机制作了初步探讨.  相似文献   

2.
以电熔刚玉和单质硅为原料压制成试样,分别在埋碳条件、1400~1600℃高温烧结,获得5个不同温度点合成样品,采用XRD分析技术研究试样的物相演变过程,对Al2O3-Si系原料在埋碳气氛合成过程中的物相变化和反应动力学机制进行了研究.结果表明试样中新生成的物相除了SiC和O'-Sialon外,合成温度在1550℃以下还存在SiO2相,1550℃以上则存在X-Sialon相.其反应过程是金属硅和氮气反应生成Si3N4,金属Si和CO反应生成SiO2和SiC;SiC和Si3N4又分别转化成Si2N2O;同时,Al2O3和Si2N2O固溶合成O'-Sialon.随着合成温度的升高,Al2O3和Si2N2O会进一步固溶生成X-Sialon.CO气体参与反应、合成温度和原料配比是控制Al2O3-Si系原料最终合成产物、产物的生成速度和生成量的重要因素.  相似文献   

3.
采用燃烧合成方法,以NaN3作为固态氮化剂,制备了α相含量高达97%以上的氮化硅粉体.研究了外部氮气压力对于燃烧合成氮化硅粉体的影响.NaN3的加入主要是为燃烧合成反应提供了比N2分子更高化学活性的内部氮源(N3原子团和N原子),同时作为Si-N反应的催化剂,使Si粉在氮气中的燃烧合成反应更加容易进行.适量的NaN3加入能够促进Si粉的完全氮化并提高燃烧产物中的α-Si3N4含量.详细探讨了采用NaN3作为固态氮化剂条件下可能的氮化硅燃烧合成机理.  相似文献   

4.
在开发迭代燃烧合成这种新工艺的基础上,进一步研究了以迭代的方式加入稀释剂对燃烧合成Si3N4的作用和影响.研究表明,以迭代的方式加入Si3N4稀释剂,可以有效的控制燃烧反应的最高温度,能够实现以低α相含量的Si3N4粉体来制备出高α相含量的Si3N4粉体,从而使Si3N4产物的α相含量得到提高.同时发现,当稀释剂加入量x较小(x=0.375)时,稀释剂的α相含量对生成Si3N4产物的α相含量影响较大,当热力学因素和动力学因素的作用达到平衡时,产物中Si生成的α-Si3N4的转化率最高值达到89%;当加入稀释剂的量较大(如x≥0.40)时,稀释剂的这种作用不明显.适宜的稀释剂加入量x值应当在0.45左右.所得结果对工业化生产α-Si3N4粉体具有指导作用.  相似文献   

5.
以MoSi2粉体为原料,分别在1400、1500、1600、1700℃温度下,0.9MPa氮气气氛条件下保温3h,研究了MoSi2的高温氮化行为。XRD、SEM和EDS研究结果表明:MoSi2的氮化产物主要有Mo5Si3和Si3N4,同时还有SiO2和Si2N2O生成,氮化生成的Si3N4呈针柱状。MoSi2氮化后生成的Si3N4的量随氮化温度的升高而增加。  相似文献   

6.
研究了各参数对燃烧合成长柱状Ybα-Sialon相组成及形貌的影响.结果表明,不同m,n值对燃烧产物相组成有很大影响.原料中Si3N4,AlN,NH4F的增加有利于Si的氮化,同时,Si3N4和NH4F的增加使α-Sialon晶粒由柱状转变为颗粒状.燃烧合成长柱状α-Sialon的形成过程是α-Sialon首先从Yb-Si-Al-O-N液相中形核析出,然后在适宜的生长条件下择优生长,发育成长柱状晶体.  相似文献   

7.
无压浸渗制备Si3N4/AlN-Al复合材料的力学性能   总被引:1,自引:1,他引:0  
采用优化的无压浸渗制备工艺(氮气气氛,950℃下浸渗4h)制备具有不同陶瓷含量的Si3N4AlN-Al复合材料,分析了复合材料力学性能随陶瓷含量变化的规律以及复合材料的断裂特征.结果表明,随着Si3N4多孔预制体陶瓷体积分数从30.2%增加到60.6%,无压浸渗制得的复合材料单轴压缩强度从620MPa增加到1728MPa,抗弯强度从429.8MPa增加到672.4MPa,硬度(HRA)从55增加到83,而断裂韧度则从10.55MPa·m1/2下降到2.26MPa·m1/2; Si3N4/AlN-Al复合材料内的裂纹主要在"残留的粗大Si3N4颗粒"、"疏松区"和"粗大的Mg2Si相"3种区域萌生.  相似文献   

8.
研究了CeO2-MgO(CeM),Dy2O3-MgO(DyM),Yb2O3-MgO(YbM)及Y2O3-MgO(YM)体系烧结助剂对氮化硅陶瓷的热导率及电学性能的影响.结果表明与YM烧结助剂相比,添加DyM烧结助剂的氮化硅陶瓷热导率较低;添加CeM烧结助剂的氮化硅陶瓷的热导率最高,为85.4W/m·K;添加YbM烧结助剂的氮化硅陶瓷也有较高的热导率,但体电阻率较低.组织分析表明,添加不同稀土元素的烧结体组织形貌基本相同,晶界相不同,添加DyM,YbM和YM烧结助剂的氮化硅陶瓷在烧结过程中分别形成了含氧晶界相Dy2Si3N4O3,Yb2Si3N2O5和Y2Si3N3O4.  相似文献   

9.
以闪速燃烧氮化法合成的β-Si3N4为原料,在1600℃的低氧分压条件下,通过加入金属Al和Y2O3,实现了β-Si3N4的烧结。通过热力学分析以及X射线衍射和扫描电镜能谱分析可知,烧后试样的主要矿物相为氮化硅、赛隆和莫来石,并且金属Al只有在体系中存在液相的条件下才能发挥促烧结的作用。  相似文献   

10.
以单质Si粉和SiO_2微粉为反应原料,在真空氮气炉中以高纯氮气保护,合成制备了Si_2N_2O。研究了反应温度(1400,1420,1440,1460,1480和1500℃)和保温时间(2,3,4和5 h)对合成Si_2N_2O的影响,利用XRD、SEM、EDX和TEM等手段对合成产物的相组成和形貌进行了表征。结果表明:反应温度为1460℃并保温3 h可以合成高纯的微米级片状和板状的Si_2N_2O,此时产物中Si:N:O非常接近于Si_2N_2O理论原子比2:2:1。  相似文献   

11.
巩甘雷  唐骥  茹红强  张宁  孙旭东 《铸造》2004,53(3):207-210
以棕刚玉、Al、Si、Al2O3为原料、采用一步工艺合成了Sialon/刚玉复合材料.研究了一步合成工艺条件下添加剂对复合材料组织、性能以及复合材料中N含量的影响.结果表明,当氮化温度超过1330℃,氮化时间超过8h后,添加Si3N4/AlN的材料中N含量基本上达到饱和值,添加Si3N4/AlN可以降低Sialon相的合成温度;1230~1280℃是一个重要的前期氮化温度,添加Si3N4/AlN的材料在该温度可完成整个氮化反应的94.24%,早期对Al、Si的充分氮化有利于Sialon相的生成和晶形完整发育.  相似文献   

12.
纳米晶Ti(C0.45,N0.55)固溶体粉末的合成及表征   总被引:2,自引:0,他引:2  
在封闭氮气气氛下,对纳米TiO2高温碳氮化合成成分接近xN=0.5的纳米晶Ti(C,N)固溶体粉末进行了研究.结果表明,当以C/Ti值为2.5配料,炉内氮气压为0.005 MPa时,一定量纳米TiO2和纳米碳黑的混合料在1500℃下等温热处理4 h可以制得晶粒尺寸为31 nm、主相为Ti(C0.45,N0.55)的球形固溶体粉末.  相似文献   

13.
在封闭氮气气氛下,对纳米TiO2高温碳氮化合成成分接近xN=0.5的纳米晶Ti(C,N)固溶体粉末进行了研究.结果表明,当以C/Ti值为2.5配料,炉内氮气压为0.005 MPa时,一定量纳米TiO2和纳米碳黑的混合料在1500℃下等温热处理4 h可以制得晶粒尺寸为31 nm、主相为Ti(C0.45,N0.55)的球形固溶体粉末.  相似文献   

14.
以Al、Mo O_3、Si O_2和B_2O_3为原料,采用超重力场辅助燃烧合成的方法制备了Mo合金,并研究了B_2O_3组分含量对Mo合金的物相组成、微观结构和力学性能的影响。在1000 g超重力场作用下,燃烧合成生产的金属与陶瓷熔体快速分离和凝固,获得致密度高的Mo合金样品。采用X射线衍射(XRD)仪、扫描电子显微镜(SEM)对Mo合金的物相组成和微观形貌进行了研究。对反应合成产物的X射线衍射分析表明,随着B_2O_3组分含量的增加,产物中有新相生成,新相的主要成分为Mo_3Si和Mo_5Si B_2。结果表明:当反应物B_2O_3组分的质量分数由0增加至12%,产物Mo合金的密度由9.76 g/cm~3下降至9.35 g/cm~3,硬度由300 MPa增加至1035 MPa,抗弯强度由711 MPa下降至460 MPa。在超重力场的作用下,B_2O_3含量的增加促进了新相的产生,新相Mo_3Si和Mo_5Si B_2的产生对Mo合金起到了增强的作用。  相似文献   

15.
研究了各参数对燃烧合成长柱状Yb α-Sialon相组成及形貌的影响。结果表明,不同m,n值对燃烧产物相组成有很大影响。原料中Si3N4,AlN,NH4F的增加有利于Si的氮化,同时,Si3N4和NH4F的增加使α-Sialon晶粒由柱状转变为颗粒状。燃烧合成长柱状α-Sialon的形成过程是α-Sialon首先从Yb-Si-Al-O-N液相中形核析出,然后在适宜的生长条件下择优生长,发育成长柱状晶体。  相似文献   

16.
以低压铸造用升液管为研究目的,以Y2O3-Al2O3-Fe2O3为复合烧结助剂,磨切单晶硅废料Si粉和SiC为主料,反应烧结法制备Si3N4/SiC复相陶瓷。研究了Y2O3含量对复合材料结构和力学性能的影响,采用XRD、SEM对复合材料的相组成、微观形貌进行分析。结果表明,反应烧结后试样生成Si3N4结合SiC晶粒为主相的烧结体,并含有少量Sialon晶须及未反应的Si。Y2O3含量对复相陶瓷力学性能影响很大,在分析稀土Y2O3作用机理的基础上,得到2.5%Y2O3优化试样的力学性能优良,相对密度达到88%,维氏硬度达到1.1 GPa,常温抗弯强度50 MPa。  相似文献   

17.
利用燃烧合成技术制备出单相柱状Ybα-SiAlON粉体,研究了原始配方对燃烧产物相组成和微观形貌的影响.结果表明适量添加α-Si3N4能够减少团聚,有利于N2渗透和Si粉氮化,并可获得Yb α-SiAlON柱状晶.利用α-SiAlON作稀释剂,适量添加NH4F也可获得形态发育良好的Yb α-SiAlON柱状晶.过量添加α-Si3N4和NH4F则会造成反应前期α-Si3N4过剩而部分转化为β-Si3N4,最终导致β-SiAlON的形成.  相似文献   

18.
以Ti、Si元素粉末为原料,采用燃烧合成技术制备了Ti:Si原子配比分别为1:1、5:4、5:3、3:1的4种多孔材料,对其燃烧合成特征、相组成、孔结构以及微观形貌进行了分析。结果表明:随着Ti含量的增加,Ti-Si体系反应程度先加剧后减弱,燃烧温度表现为先升高后降低的变化趋势,最高燃烧温度达2075 K;燃烧产物分别以TiSi、Ti5Si4、Ti5Si3、Ti5Si3相为主。多孔材料开孔率为42.43%~49.42%,体积中值孔径处于64.10~18.11μm;抗压强度最高达到23.15MPa。造孔机制主要包括粉末压坯颗粒间的原始孔隙;燃烧合成反应过程中先熔化的硅颗粒在毛细作用下发生流动形成的原位孔隙;原位孔隙和颗粒间原始孔隙结合形成的大孔隙;燃烧合成过程中因熔化析出作用导致摩尔体积下降形成的小孔隙。  相似文献   

19.
用湿化学方法,通过非均匀成核方式将烧结助剂Al2O3,Y2O3均匀包覆到纳米SiC及Si3N4颗粒表面.经烧结助剂表面包覆修饰后的SiC,Si3N4粉体表现出相似的胶体特性,其等电点IEP分别从pH=3.4,pH=4.4移至pH=8.6,pH=9.2.在pH=7.5时,被覆烧结助剂的SiC,Si3N4颗粒都具有较高的Zeta电位正值,具有良好的分散性.然后,通过胶态悬浮液混合,将纳米SiC均匀分散到Si3N4基体中.从而实现纳米复相陶瓷中各相的均匀混合.实验结果表明,用湿化学方法制备的Si3N4/SiC纳米复相陶瓷材料具有较均匀的显微结构、良好的烧结性能和力学性能.  相似文献   

20.
以硅粉和炭黑为原料,在N2气氛中通过燃烧合成制备出纳米SiC粉体。利用XRD、SEM等手段研究了N2压力、球料比、研磨时间等因素对燃烧合成反应的影响。结果表明,球料比和研磨时间对物料的反应程度影响显著。在球料比≥12.5∶1、球磨时间≥4 h的条件下,原料粉体可实现完全燃烧,生成产物主要为β-SiC,平均颗粒尺寸小于100 nm。在实验基础上,结合热力学分析,研究指出SiC是在N2催化作用下通过Si-C燃烧合成得到的,反应历程为:Si粉首先与N2反应生成Si3N4,同时放出大量的热,随着反应温度的升高,先生成的Si3N4发生分解,释放出的游离Si与C反应生成SiC。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号