首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
根据半导体材料的性能参数,考虑光电压V和耗尽区宽度W的变化对光电流JL的影响,较严格地计算了CdS/CdTe和CdS/Cu2S两种异质结单晶薄膜太阳电池的光优特性曲线。然后在J^ⅠSC=J^ⅡSC的条件下,以由上述两种异质结构成的二重结太阳电池的CdTe,Cu2S厚度进行匹配,计算各种组合下二重结太阳电光伏特性曲线。理论证明最佳匹配厚度Hmax约为9.06μm,最大短路电流、开路电压、转移效率分别  相似文献   

2.
根据半导体材料的性能参数,考虑光电压V和耗尽区宽度W的变化对光电流JL的影响,较严格地计算了CdS/CdTe和CdS/Cu2S两种异质结单晶薄膜太阳电池的光伏特性曲线。然后在的条件下,对由上述两种异质结构成的二重结太阳电池的CdTe、Cu2S厚度进行匹配,计算各种组合下二重结太阳电池的光伏特性曲线。理论证明最佳匹配厚度Hmax约为9.06μm,最大短路电流、开路电压、转换效率分别为14.22mAcm-2、1.3V和14、68%。  相似文献   

3.
快速汽相沉积法制备硅薄膜太阳电池   总被引:1,自引:1,他引:0  
对在重掺杂抛光单晶硅衬底上用RTCVD法形成硅薄膜太阳电池进行了研究。衬底为〈100〉晶向p+ + 型重掺硅片,电阻率为5×10- 3Ωcm 。主要工艺过程为:在衬底上生长一层硅薄膜同时掺硼,膜厚38μm ,扩磷制备p-n 结,背面蒸Al及Ti/Pd/Ag 制背电极,正表面在扩散后生长一层SiO2 ,前面用光刻剥离法制备Ti/Pd/Ag 电极,制成的1cm 2 太阳电池,开路电压VOC= 612.8m V,短路电流ISC= 29.3m A,填充因子FF= 0.7579,效率η= 13.61。对一些影响电池特性的因素进行了研究,发现硅薄膜的掺杂浓度、发射层的掺杂浓度以及减反射层都对太阳电池的特性有较大影响。  相似文献   

4.
用电子束加热真空蒸发法(EBV法)制备了厚度为350nm的ZnIn2S4薄膜。研究了最佳成膜工艺条件和最新电子能谱分析结果;通过不同气氛处理可以控制材料的导电类型,典型膜的电阻率为2.5×10^-1Ω.cm,Hall迁移率为52cm^2.V^-1.s^-1,载流子浓度为1.42×10^17cm^-3,禁带宽度为2.13eV。探讨了ZnIn2S4膜的导电机理,并制作了ZnIn2S4-Si太阳电池。  相似文献   

5.
用蒸发硒化法制作的基于CuInS32(CIS)膜的CIS/CdS太阳电池,面积为0.1cm^2和1cm^2电池的转换效率分别达到7.62^和7.28%,5cm×6cm电池的平均效率达到6.67%,对制备工艺及关键技术,电池性能和退火效应进行了分析探讨。  相似文献   

6.
CdTe薄膜半导体电极通过电沉积法制备。电沉积溶液组成对CdTe薄膜组成和性能有较大影响,通过在电镀液中添加某些稀土离子,结合XRD、TEM、XPS和光电I-V特性曲线进行分析研究,表明电沉积CdTe薄膜存在择优取向,经250℃热处理后,晶粒长大,镀液中添加Y^3+、La^3+、Ce^3+和Nd^3+后增大尤为明显,晶粒线性尺寸最大达2.5-3.0×10^-7m左右,并伴有孪晶产生,可提高薄膜Cd  相似文献   

7.
泥炭水解制木糖的研究   总被引:3,自引:0,他引:3  
泥炭稀酸水解制木糖是泥炭综合利用的有益探索。通过对水解反应条件的研究,其最佳工艺条件为:泥炭粒度120目,液固比L/S=11,反应时间t=150min,反应温度T=100℃,盐酸浓度CHCl=5.0%,助催化剂FeCl3·6H2O浓度Cal%=1.5%。  相似文献   

8.
林鸿生  陈浩 《太阳能学报》1995,16(4):352-360
应用Scharfetter-Gummel解法数值求解电子、空穴连续性方程和泊松方程,对CdS/CuInSe2异质结的伏安特性进行计算机数值模拟。基于材料、器件参数的实验数据,我们的计算结果支持了CuInSe2中的Shockley=Read空间电荷复合是控制CdS/CuInSe2异质结二极管正向电流主导的物理机制,进一步说明在提高CIS太阳电池性能的努力中开展CuInSe2化学缺陷研究的重要性。  相似文献   

9.
报道了大面积(2790cm2)集成型a-SiC:H/a-Si:H叠层太阳电池的研制及稳定性实验结果,讨论了限制该电池效率的一些因素。实验电池的性能参数:Voc=40.8V,ISC=530.40mA,FF=49.4%,有效面积(2280cm2)光电转换效率EF=4.69%(AM1.5,100mWcm-2,25℃)。制备出光电子学性能优良的a-SiC:H薄膜及解决电池内部n/P结的接触问题是提高该电池性能的关键。  相似文献   

10.
对掺硼(B)材料的固相晶化进行了研究。通过对不同掺B浓度的a-Si:H样品退火前后的X射线衍射,光吸收系数、电导率、激活能及Hall迁移率的测量发现,B原子在固相晶化过程中起晶核作用,晶化后的样品具有较高的迁移率及电导率,同时具有较大的禁带宽度。当掺B浓度仅为0.17%时,晶化后样品的电导率4.35scm^-1,迁移率为140cm^2V^-1S^-1,禁带宽度E04=2.16eV。该材料是一种较好  相似文献   

11.
Orbital engineering is an important strategy for modulating light absorption in photocatalysis. Here, Bi doping of the oxide photocatalyst Li2SnO3 to enhance light absorption was rationally designed by orbital engineering. Based on density functional theory, owing to the lower Bi 6s energy level compared with that of Sn 5s, a deep impurity energy level induced by ionic Bi–O bonds is generated in the middle band gap of Li2SnO3. The impurity energy level can facilitate the utilization efficiency of light absorption, leading to remarkably enhanced photocatalytic performance. For Li2Sn0.9Bi0.1O3, the photodegradation rate of tetracycline solution reached 76% within 30 min, which was approximately 2.6 times higher than that for Li2SnO3. A radical trapping experiment revealed that the holes (h+) play a dominant role in the elimination reaction. Finally, liquid chromatography–mass spectrometry was performed to monitor the photocatalytic process. This study lays a foundation for rational design of photocatalysts with excellent light absorption for photocatalysis.  相似文献   

12.
It is shown that in photocells based on technical-grade polycrystalline Si that are exposed to subband photons, the current and voltage generated are higher than in single-crystalline Si photocells. This is explained as a manifestation of the impurity thermophotovoltaic effect of the grain boundaries of technical-grde polycrystalline Si.  相似文献   

13.
The experimental data on the implementation of the impurity thermovoltaic effect arising at polycrystalline silicon grain boundaries are presented. The temperature curve of the dark short-circuit current in a polycrystalline silicon solar cell, whose shape is determined by the effect revealed, is qualitatively discussed.  相似文献   

14.
Poly-Si films were produced using a metal-induced growth technique by sputtering from an n-type Si target onto a 50 nm thick Co seed-layer at 625°C. Silicon grew heteroepitaxially on the CoSi2 layer formed due to the reaction between the sputtered Si atoms and Co at the beginning stage of deposition. A 5 μm thick Si film with grain features up to 1 μm was produced on the thin and flexible tungsten substrate by using a two-step sputtering method. The films also have a natural texture structure on the surface that is strongly recommended in thin-film solar cells in order to obtain high current density by increasing incident light trapping. After post-sputtering annealing at 700°C, the measured minority carrier lifetime for poly-Si film was 1.33 μs which shows the film to be suitable for photovoltaic applications. To explore the photovoltaic applications by using MIG poly-Si films, Au/n-Si Schottky photodiodes were fabricated due to the process simplicity. The effects of different parameters, which include film doping density, active-layer thickness, Si film surface conditions and hydrogenation, were studied. It was found that with the increasing of doping density, the open-circuit voltage (Voc) increased while short-circuit current density (Jsc) decreased. Increasing the poly-Si active-layer thickness tended to improve the light absorption with an increased Jsc, but the Voc was decreased due to a higher value of reverse saturation current. Because the metal/semiconductor interface condition facilitates the carrier transport in Schottky devices, the earlier study of modifying the Si surface by polishing showed an improved Voc. The overall photo response was further improved by plasma hydrogenation.  相似文献   

15.
从表面态和材料电阻率的角度分析了酞菁铜衍生物LB膜光伏电池的反常整流效应,讨论了该效应与光生电流的关系,并介绍了消除反常现象提高光生电流的实验方法。  相似文献   

16.
This paper presents a one-dimensional and semi-empirical model of a high-temperature PEM fuel cell (HT-PEMFC) to determine the performance characteristics through energy, exergy, and ecological analysis. The proposed model is compared with different experimental studies and supported by a few statistical approaches to prove its accuracy. As a result, the minimum and maximum R2 values are determined to be 99.67% and 99.97%, respectively. In addition, the performance of the fuel cell is investigated under varying leakage current densities and doping levels. Accordingly, increasing the leak current density decreases the power density, net output voltage, energy efficiency, and exergy efficiency by 5.77%, 5.88%, 5.44%, and 5.48%, respectively, whereas increasing the doping level boosts these parameters by 23.07%, 11.76%, 30.25%, and 32.52%, respectively. In addition, increasing the leak density decreases all ecological functions. In contrast, raising the doping level increases the ecological parameters considerably and reduces the improvement potential.  相似文献   

17.
As the thickness of crystalline silicon solar cells decreases, light loss cannot be avoided due to the absorption limit in long wavelength light. Internal rear side reflection can be enhanced by polishing the rear surface. The rear polishing processes are performed before the texturing and before and after doping the emitter layer to optimize the solar cell fabrication process sequences. All cells made by rear surface polishing showed improved light trapping in long wavelength region (900-1100 nm) compared to that in the conventional cells. However, silicon solar cells fabricated by rear polishing before and after doping have similar (35.5 mA/cm2) or lower (35.26 mA/cm2) short circuit current density compared to the cells produced by the conventional process (35.59 mA/cm2) due to pore damage to the anti-reflection layer and the surface of the emitter layer during rear polishing. This surface damage was effectively prevented adapting the rear surface polishing before the front surface texturing, which led to increasing the current density from 35.59 to 36.29 mA/cm2.  相似文献   

18.
Ce-doped ZnO/CNT composite thin film was fabricated successfully on soda-lime-silica glass substrate by sol-gel drop coating method. The structure and morphology of nanocrystalline Ce-doped ZnO/CNT thin film were characterized by X-ray Diffraction (XRD), X-ray photo-electron spectroscopy (XPS), Field Emission Scanning Electron Microscope (FESEM) and UV–Visible spectroscopy. The photocatalytic activity of Ce-doped ZnO/CNT thin film was evaluated by photocatalytic degradation of methylene blue (MB) in aqueous solution as a model pollutant under visible light irradiation. The synthesized Ce-doped ZnO/CNT composite thin film showed 76.71% photocatalytic efficiency whereas bare ZnO thin film showed that of only 25.30%. It has been reported that improved photocatalytic efficiency of composite is due to the synergistic effect of Ce doping and insertion of CNTs into ZnO matrix. The experimental photodegradation data were well fitted to first-order kinetics. The photocatalytic activity of the prepared thin film can be regenerated, which implies that the photocatalytic degradation process could be operated at a relatively low cost. The results suggest that Ce-doped ZnO/CNT composite thin film prepared by sol-gel drop coating method can be developed as an economically feasible and environmentally friendly method to degrade dye containing wastewater using visible light. Furthermore, atomic models for Ce doping in ZnO cluster was used to investigate the effect of doping on electronic structure of ZnO through density functional theory calculations. The computational study suggested a significant narrowing of the band gap and change of the maximum absorption bands towards higher wavelength. These all support the experimental results.  相似文献   

19.
Recently, the impurity photovoltaic effect (IPV) was proposed to improve the solar cell performance. Free electron–hole pairs can be generated in a two-step process involving an impurity level in the energy gap and two lower-energy photons: first electrons are optically excited from the valence band to the defect level and then from the defect level to the conduction band. The IPV effect will thus enhance the long-wavelength response of the cell.A significant amount of theoretical work has been carried out on IPV effect in the literature, particularly on silicon solar cells with indium impurities as defect. However, the lack of an easily available solar cell simulator including the IPV effect is a handicap.In this work, the numerical solar cell simulator SCAPS of the ELIS group was extended to include IPV in collaboration between the ELIS and the LPDS groups. Also, some special features are implemented, such as the calculation of electron and hole photoemission cross-sections of the impurity using the model of Lucovsky. The functionality of new SCAPS version was checked against existing results in the literature. Also, new results are presented such as the evolution of solar cell parameters with the indium density. We find that increasing indium concentration can improve silicon solar cell parameters, especially the short-circuit current and the efficiency, without drastically decreasing the open-circuit voltage. This is possible if a suitable structure for the cell is chosen. The optimum indium density should be equal around the base region density to obtain a positive benefit from the IPV effect.Light trapping, which is related to the internal reflectance at the front and the back of the cell, is very important in the IPV study. Reflectivity at the front and the back should exceed 99.9% to obtain a real efficiency increase. We calculate an improvement of about 6 mA/cm2 in the photocurrent, and about 2% for the efficiency, which is due to the enhancement of long-wavelength absorption by the IPV effect.  相似文献   

20.
采用磁控溅射淀积合金膜和纯铁膜,通过离子注入掺杂,研究了不同条件下FeS2薄膜的晶体结构,光吸收系数、电阻率、载流子浓度等光电性能,并用正电子湮灭谱研究了膜内的空位缺陷。结果表明,掺杂提高了薄膜的导电性能。离子注入使薄膜光吸收系数增加,禁带宽度上升,霍尔迁移率提高;合金溅射导致光吸收系数降低,禁带宽度下降,载流子浓度升高。注入Zn2 退火前空位浓度较大,退火后空位浓度低于纯FeS2膜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号