首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. Abad  T. Mattisson  A. Lyngfelt  M. Rydén 《Fuel》2006,85(9):1174-1185
Chemical-looping combustion (CLC) is a method for the combustion of fuel gas with inherent separation of carbon dioxide. This technique involves the use of two interconnected reactors. A solid oxygen carrier reacts with the oxygen in air in the air reactor and is then transferred to the fuel reactor, where the fuel gas is oxidized to carbon dioxide and water by the oxygen carrier. Fuel gas and air are never mixed and pure CO2 can easily be obtained from the flue gas exit. The oxygen carrier is recycled between both reactors in a regenerative process. This paper presents the results from a continuously operating laboratory CLC unit, consisting of two interconnected fluidized beds. The feasibility of the use of a manganese-based oxygen carrier supported on magnesium stabilized zirconia was tested in this work. Natural gas or syngas was used as fuel in the fuel reactor. Fuel flow and air flow was varied, the thermal power was between 100 and 300 W, and the air ratio was between 1.1 and 5.0. Tests were performed at four temperatures: 1073, 1123, 1173 and 1223 K. The prototype was successfully operated at all conditions with no signs of agglomeration or deactivation of the oxygen carrier. The same particles were used during 70 h of combustion and the mass loss was 0.038% per hour, although the main quantity was lost in the first hour of operation. In the combustion tests with natural gas, methane was detected in the exit flue gases, while CO and H2 were maintained at low concentrations. Higher temperature or lower fuel flows increases the combustion efficiency, which ranged from 0.88 to 0.99. On the other hand, the combustion of syngas was complete for all experimental conditions, with no CO or H2 present in the gas from the fuel reactor.  相似文献   

2.
Paul Cho  Tobias Mattisson 《Fuel》2004,83(9):1215-1225
For combustion with CO2 capture, chemical-looping combustion (CLC) with inherent separation of CO2 is a promising technology. Two interconnected fluidized beds are used as reactors. In the fuel reactor, a gaseous fuel is oxidized by an oxygen carrier, e.g. metal oxide particles, producing carbon dioxide and water. The reduced oxygen carrier is then transported to the air reactor, where it is oxidized with air back to its original form before it is returned to the fuel reactor. The feasibility of using oxygen carrier based on oxides of iron, nickel, copper and manganese was investigated. Oxygen carrier particles were produced by freeze granulation. They were sintered at 1300 °C for 4 h and sieved to a size range of 125-180 μm. The reactivity of the oxygen carriers was evaluated in a laboratory fluidized bed reactor, simulating a CLC system by exposing the sample to alternating reducing and oxidizing conditions at 950 °C for all carriers except copper, which was tested at 850 °C. Oxygen carriers based on nickel, copper and iron showed high reactivity, enough to be feasible for a suggested CLC system. However, copper oxide particles agglomerated and may not be suitable as an oxygen carrier. Samples of the iron oxide with aluminium oxide showed signs of agglomeration. Nickel oxide showed the highest reduction rate, but displayed limited strength. The reactivity indicates a needed bed mass in the fuel reactor of about 80-330 kg/MWth and a needed recirculation flow of oxygen carrier of 4-8 kg/s, MWth.  相似文献   

3.
Chemical‐looping combustion (CLC) is a combustion method for a gaseous fuel with inherent separation of the greenhouse gas carbon dioxide. A CLC system consists of two reactors, an air reactor and a fuel reactor, and an oxygen carrier circulating between the two reactors. The oxygen carrier transfers the oxygen from the air to the fuel. The flue gas from the fuel reactor consists of carbon dioxide and water, while the flue gas from the air reactor is nitrogen from the air. A two‐compartment fluidized bed CLC system was designed and tested using a flow model in order to find critical design parameters. Gas velocities and slot design were varied, and the solids circulation rate and gas leakage between the reactors were measured. The solids circulation rate was found to be sufficient. The gas leakage was somewhat high but could be reduced by altering the slot design. Finally, a hot laboratory CLC system is presented with an advanced design for the slot and also with the possibility for inert gas addition into the downcomer for solids flow increase.  相似文献   

4.
《Fuel》2007,86(7-8):1021-1035
Chemical-looping combustion (CLC) is a method for the combustion of fuel gas with inherent separation of carbon dioxide. This technique involves the use of two interconnected reactors, an air reactor and a fuel reactor. The oxygen demanded in the fuel combustion is supplied by a solid oxygen carrier, which circulates between both reactors. Fuel gas and air are never mixed and pure CO2 can be obtained from the flue gas exit. This paper presents the results from the use of an iron-based oxygen-carrier in a continuously operating laboratory CLC unit, consisting of two interconnected fluidized beds. Natural gas or syngas was used as fuel, and the thermal power was between 100 and 300 W. Tests were performed at four temperatures: 1073, 1123, 1173 and 1223 K. The prototype was successfully operated for all tests and stable conditions were maintained during the combustion. The same particles were used during 60 h of hot fluidization conditions, whereof 40 h with combustion. The combustion efficiency of syngas was high, about 99% for all experimental conditions. However, in the combustion tests with natural gas, there was unconverted methane in the exit flue gases. Higher temperature and lower fuel flows increase the combustion efficiency, which ranged between 70% and 94% at 1123 K. No signs of agglomeration or mass loss were detected, and the crushing strength of the oxygen carrier particles did not change significantly. Complementary experiments in a batch fluidized bed were made to compare the reactivity of the oxygen carrier particles before and after the 40 h of operation, but the reactivity of the particles was not affected significantly.  相似文献   

5.
A modeling tool for the investigation of chemical looping combustion (CLC) in a dual circulating fluidized bed (DCFB) reactor system is introduced. CLC is a novel combustion process with inherent CO2 separation, consisting of two fluidized bed reactors, an air reactor (AR) and a fuel reactor (FR). A solid oxygen carrier (OC) that circulates between the reactors, transports the necessary oxygen for the combustion. In the DCFB concept both AR and FR are designed as circulating fluidized beds (CFBs). Each CFB is modeled using a very simple structure in which the reacting gas is only in contact with a defined fraction of the well mixed solids. The solids distribution along the height axis is defined by a void fraction profile. Different parameters that characterize the gas-solids contact are merged into only one parameter: the fraction of solids exposed to the gas passing in plug flow (φs,core). Using this model, the performance of the 120 kW DCFB chemical looping combustor at Vienna University of Technology is investigated. This pilot rig is designed for a Ni-based OC and natural gas as fuel. The influence of the reactor temperatures, solids circulation rate, air/fuel ratio and fuel power are determined. Furthermore, it is shown that with the applied kinetics data, the OC is only fully oxidized in the AR when the AR solids inventory is much larger than the FR solids inventory or when both reactors are very large. To compare different reactor systems, the effect of the solids distribution between AR and FR is studied and both gas and solids conversions are reported.  相似文献   

6.
M.K. Chandel  A. Delebarre 《Fuel》2009,88(5):898-3627
Chemical looping combustion (CLC) is the process in which metal oxides, rather than air or pure oxygen, supply the oxygen required for combustion. In this process, different gaseous fuels can be burnt with the inherent separation of CO2. The feasibility of the CLC system depends greatly on the selection of appropriate metal oxides as oxygen carriers (OC). In this study, NiO-NiAl2O4, Cu0.95Fe1.05AlO4, and CuO-Cu0.95Fe1.05AlO4 were tested experimentally in a fluidized bed reactor as a function of oxidation-reduction cycles, temperature, bed inventory and superficial gas velocity. The results showed that flue gases with a CO2 concentration as high as 97% can be obtained. The flue gases should be suitable for transport and storage after clean-up and purification. With an increase in the bed inventory or a decrease in superficial gas velocity, the flue gas characteristics improved i.e. more CO2 and fewer secondary components or less unreacted fuel were obtained. Carbon formation could occur during the reduction phase but it decreased with an increase in temperature and inventory and could be completely avoided by mixing steam with the fuel. The reactivity of NiO/NiAl2O4 was higher than the Cu- and Fe-based oxygen carriers. Increasing the CuO fraction in the oxygen carrier led to defluidization of the bed during the reduction and oxidation phases.  相似文献   

7.
There are growing concerns about increasing emissions of greenhouse gases and a looming global warming crisis. CO2 is a greenhouse gas that affects the climate of the earth. Fossil fuel consumption is the major source of anthropogenic CO2 emissions. Chemical looping combustion (CLC) has been suggested as an energy‐efficient method for the capture of carbon dioxide from combustion. A chemical‐looping combustion system consists of a fuel reactor and an air reactor. The air reactor consists of a conventional circulating fluidized bed and the fuel reactor is a bubbling fluidized bed. The basic principle involves avoiding direct contact of air and fuel during the combustion. The oxygen is transferred by the oxygen carrier from the air to the fuel. The water in combustion products can be easily removed by condensation and pure carbon dioxide is obtained without any loss of energy for separation. With the improvement of numerical methods and more advanced hardware technology, the time required to run CFD (computational fluid dynamic) codes is decreasing. Hence, multiphase CFD‐based models for dealing with complex gas‐solid hydrodynamics and chemical reactions are becoming more accessible. To date, there are no reports in the literature concerning mathematical modeling of chemical‐looping combustion using FLUENT. In this work, the reaction kinetics models of the (CaSO4 + H2) fuel reactor is developed by means of the commercial code FLUENT. The effects of particle diameter, gas flow rate and bed temperature on chemical looping combustion performance are also studied. The results show that the high bed temperature, low gas flow rate and small particle size could enhance the CLC performance.  相似文献   

8.
Chemical-looping combustion (CLC) is a novel technology that can be used to meet demands on energy production without CO2 emissions. The CLC-process includes two reactors, an air and a fuel reactor. Between these two reactors oxygen is transported by an oxygen carrier, which most often is a metal oxide. This arrangement prevents mixing of N2 from the air with CO2 from the combustion. The combustion gases consist almost entirely of CO2 and H2O. Therefore, the technique reduces the energy penalty that normally arises from the separation of CO2 from other flue gases, hence, CLC may make capture of CO2 cheaper.Iron ore and oxide scale from steel production were tested as oxygen carriers in CLC batch experiments with solid fuels. Petroleum coke, charcoal, lignite and two bituminous coals were used as fuels.The experiments were carried out in a laboratory fluidized-bed reactor that was operating cyclically with alternating oxidation and reduction phases. The exhaust gases were led to an analyzer where the contents of CO2, CO, CH4 and O2 were measured. Gas samples collected in bags were used to analyze the content of hydrogen in a gas chromatograph.The results showed that both the iron ore and the oxide scale worked well as oxygen carrier and both oxygen carriers increased their reactivity with time.  相似文献   

9.
《Fuel》2007,86(7-8):1036-1045
Chemical-looping combustion (CLC) is an attractive technology to decrease greenhouse gas emissions affecting global warming, because it is a combustion process with inherent CO2 separation and therefore without needing extra equipment for CO2 separation and low penalty in energy demand. The CLC concept is based on the split of a conventional combustion of gas fuel into separate reduction and oxidation reactions. The oxygen transfer from air to fuel is accomplished by means of an oxygen carrier in the form of a metal oxide circulating between two interconnected reactors. A Cu-based material (Cu14Al) prepared by impregnation of γ-Al2O3 as support with two different particle sizes (0.1–0.3 mm, 0.2–0.5 mm) was used as an oxygen carrier for a chemical-looping combustion of methane. A 10 kWth CLC prototype composed of two interconnected bubbling fluidized bed reactors has been designed, built in and operated at 800 °C during 100 h for each particle size. In the reduction stage full conversion of CH4 to CO2 and H2O was achieved using oxygen carrier-to-fuel ratios above 1.5. Some CuO losses as the active phase of the CLC process were detected during the first 50 h of operation, mainly due to the erosion of the CuO present in external surface of the alumina particles. The high reactivity of the oxygen carrier maintained during the whole test, the low attrition rate detected after 100 h of operation, and the absence of any agglomeration problem revealed a good performance of these CuO-based materials as oxygen carriers in a CLC process.  相似文献   

10.
Chemical looping combustion (CLC) is a flameless two-step fuel combustion that produces a pure CO2 stream, ready for compression and sequestration. The process is composed of two interconnected fluidized bed reactors. The air reactor which is a conventional circulating fluidized bed and the fuel reactor which is a bubbling fluidized bed. The basic principle is to avoid the direct contact of air and fuel during the combustion by introducing a highly-reactive metal particle, referred to as oxygen carrier, to transport oxygen from the air to the fuel. In the process, the products from combustion are kept separated from the rest of the flue gases namely nitrogen and excess oxygen. This process eliminates the energy intensive step to separate the CO2 from nitrogen-rich flue gas that reduce the thermal efficiency.Fundamental knowledge of multiphase reactive fluid dynamic behavior of the gas-solid flow is essential for the optimization and operation of a chemical looping combustor.Our recent thorough literature review shows that multiphase CFD-based models have not been adapted to chemical looping combustion processes in the open literature. In this study, we have developed the reaction kinetics model of the fuel reactor and implemented the kinetic model into a multiphase hydrodynamic model, MFIX, developed earlier at the National Energy Technology Laboratory. Simulated fuel reactor flows revealed high weight fraction of unburned methane fuel in the flue gas along with CO2 and H2O. This behavior implies high fuel loss at the exit of the reactor and indicates the necessity to increase the residence time, say by decreasing the fuel flow rate, or to recirculate the unburned methane after condensing and removing CO2.  相似文献   

11.
《Fuel》2004,83(13):1749-1757
In a chemical-looping combustion (CLC) process, gas (natural gas, syngas, etc.) is burnt in two reactors. In the first one, a metallic oxide that is used as oxygen source is reduced by the feeding gas to a lower oxidation state, being CO2 and steam the reaction products. In the second reactor, the reduced solid is regenerated with air to the fresh oxide, and the process can be repeated for many successive cycles. CO2 can be easily recovered from the outlet gas coming from the first reactor by simple steam condensation. Consequently, CLC is a clean process for the combustion of carbon containing fuels preventing the CO2 emissions to the atmosphere. The main drawback of the overall process is that the carriers are subjected to strong chemical and thermal stresses in every cycle and the performance and mechanical strength can decay down to unacceptable levels after enough number of cycles in use.In this paper the behaviour of CuO as an oxygen carrier for a CLC process has been analysed in a thermogravimetric analyser. The effects of carrier composition and preparation method used have been investigated to develop Cu-based carriers exhibiting high reduction and oxidation rates without substantial changes in the chemical, structural and mechanical properties for a high number of oxidation-reduction cycles. It has been observed that the carriers prepared by mechanical mixing or by coprecipitation showed an excellent chemical stability in multicycle tests in thermobalance, however, the mechanical properties of these carriers were highly degraded to unacceptable levels. On the other hand, the carriers prepared by impregnation exhibited excellent chemical stability without substantial decay of the mechanical strength in multicycle testing. These results suggest that copper based carriers prepared by impregnation are good candidates for CLC process.  相似文献   

12.
In chemical-looping combustion (CLC) a gaseous fuel is burnt with inherent separation of the greenhouse gas carbon dioxide. The oxygen is transported from the combustion air to the fuel by means of metal oxide particles acting as oxygen carriers. A CLC system can be designed similar to a circulating fluidized bed, but with the addition of a bubbling fluidized bed on the return side. Thus, the system consists of a riser (fast fluidized bed) acting as the air reactor. This is connected to a cyclone, where the particles and the gas from the air reactor are separated. The particles fall down into a second fluidized bed, the fuel reactor, and are via a fluidized pot-seal transported back into the riser. The gas leaving the air reactor consists of nitrogen and unreacted oxygen, while the reaction products, carbon dioxide and water, come out from the fuel reactor. The water can easily be condensed and removed, and the remaining carbon dioxide can be liquefied for subsequent sequestration.The gas leakage between the reactors must be minimized to prevent the carbon dioxide from being diluted with nitrogen, or to prevent carbon dioxide from leaking to the air reactor decreasing the efficiency of carbon dioxide capture. In this system, the possible gas leakages are: (i) from the fuel reactor to the cyclone and to the pot-seal, (ii) from the cyclone down to the fuel reactor, (iii) from the pot-seal to the fuel reactor. These gas leakages were investigated in a scaled cold model. A typical leakage from the fuel reactor was 2%, i.e. a CO2 capture efficiency of 98%. No leakage was detected from the cyclone to the fuel reactor. Thus, all product gas from the air reactor leaves the system from the cyclone. A typical leakage from the pot-seal into the fuel reactor was 6%, which corresponds to 0.3% of the total air added to the system, and would give a dilution of the CO2 produced by approximately 6% air. However, this gas leakage can be avoided by using steam, instead of air, to fluidize the whole, or part of, the pot-seal. The disadvantages of diluting the CO2 are likely to motivate the use of steam.  相似文献   

13.
Chemical looping combustion (CLC) uses an oxygen carrier circulating between an air and a fuel reactor to replace direct burning of fuels in air. The very low energy penalty for CO2 separation in CLC gives it the potential to become an important technology on the way to a CO2 neutral energy supply. In this work, the influence of the particle size of coal on the rate of reaction of the coal was investigated in a bed of oxygen carrier. In order to do this, a method to quench the reaction of coal with oxygen carriers at a specified time and measure the particle size distribution of the remaining coal was developed. Three size fractions of coal were used in the experiments: 90–125, 180–212 and 250–355 μm. Particle size distributions of the fuel show a decrease in particle size with time. The influence of devolatilisation of the coal on the coal particle size was measured, showing that coal particles do not break in the fluidized bed reactor used for the experiments. Reaction rates based on measurements of gas phase concentrations of CO2, CO and CH4 showed that the reaction rate is independent of the particle size. These results are in line with literature findings, as studies have shown that carbon gasification is size-independent at conditions similar to those in the performed CLC experiments.  相似文献   

14.
The chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU) processes are novel solutions for efficient combustion with direct separation of carbon dioxide. These processes use a metal oxide as an oxygen carrier to transfer oxygen from an air to a fuel reactor, where the fuel reacts with the solid oxygen carrier. When utilizing coal in CLC, the oxygen carrier particles could be affected through interaction with the ash-forming mineral matter found in coal, causing deactivation and/or agglomeration. In this work, possible interactions between minerals commonly encountered in coal and several promising oxygen carriers that are currently under investigation for their use in CLC are studied by both experiment and thermodynamic equilibrium calculations. Possible interaction was studied for both highly reducing and oxidizing conditions at 900 °C. Under highly reducing conditions pyrite was found to have by far the most deteriorating effect on the oxygen carrier particles, as the sulfur in the pyrite reacted with the oxygen carrier to form sulfides. Quartz and clay minerals were found to have a rather low influence on the oxygen carriers. Out of the oxygen carriers investigated, CuO/MgAl2O4 and the Mn3O4/ZrO2 oxygen carriers tended to be quite reactive towards mineral matter whereas ilmenite has been shown to be the most robust oxygen carrier. Although sulfur can clearly deactivate Ni, Cu and Mn based oxygen carriers under sub-stoichiometric conditions, when the fuel is converted fully to CO2 and H2O, sulfides are only expected for Ni-based oxygen carriers.  相似文献   

15.
Chemical-looping combustion (CLC) is a novel combustion technology with inherent separation of the greenhouse gas CO2 and low NOx (NO, NO2, N2O) emissions. In CLC, the solid oxygen carrier supplies the stoichiometric oxygen needed for CO2 and water formation, resulting in a free nitrogen mixture. The performance of oxygen carrier is the key to CLC's application. A good oxygen carrier for CLC should readily react with the fuel (fuel reactor) and should be re-oxidized upon being contacted with oxygen (air reactor). In this case, the behavior of CaSO4 as an oxygen carrier for a CLC process, reacting with gas fuels (e.g., CO, H2, and CH4) and solid fuels (e.g., coal and biomass), has been analyzed. The performance of the oxygen carrier can be improved by changing the preparation method or by making mixed oxides. Generally, Al2O3, SiO2, etc., which act a porous support providing a higher surface area for reaction, are used as the inert binder to increase the reactivity, durability, and fluidizability of the oxygen carrier particles. Further, simulation analysis of a CLC process based on CaSO4 oxygen carrier was also analyzed. Finally, some important tendencies related to CaSO4 oxygen carrier in CLC technology are put forward.  相似文献   

16.
沈天绪  沈来宏 《化工进展》2023,42(1):138-147
化学链燃烧反应器具有广泛的燃料适应性,可同时兼顾气、液、固多类型燃料的运行。本文依托耦合内构件的3kW塔式串行流化床反应器,分别开展异丙醇、污泥以及煤炭的化学链燃烧实验,探究燃料物化属性对化学链燃烧过程与反应器运行的影响,揭示面向目标燃料的反应器针对性设计、载氧体性能选择与流化操作策略,助力形成指向性强、碳捕集效率高与操作灵活的化学链燃烧技术。面对碳化程度低、有机质含量高的固体燃料,焦炭气化速率已非强化重点,如污泥在3kW塔式反应器910℃与150s停留时间内,可实现大于99%的CO2捕集效率,化学链燃烧反应器应侧重改善可燃气体转化与旋风分离器对轻质焦炭颗粒的捕捉。当采用异丙醇等高CH4含量的燃料时,Fe基矿石载氧体的反应性能不足,3kW反应器的额外耗氧率高达10%~19%,其中未燃尽CH4对额外耗氧率的贡献占比超80%。化学链燃烧反应器需依据热解反应气的物化特性,选择或掺混功能性载氧体,以针对性改善气固转化。在煤等高碳化燃料的化学链燃烧过程中,焦炭气化是反应的限制性步骤,简化循环结构的3kW塔式反应器停留时间不足,仅可...  相似文献   

17.
基于赤铁矿载氧体的煤化学链燃烧试验   总被引:3,自引:3,他引:0       下载免费PDF全文
化学链燃烧是一种具有CO2内分离特性的燃烧方式。以赤铁矿为载氧体,在1 kWth级串行流化床上进行了煤化学链燃烧试验。讨论了燃料反应器温度对气体产物组分的影响;比较了各反应参数对煤气化效率、煤气化产物的转化效率及碳捕集效率的影响情况,分析了煤中硫的排放问题。试验结果表明:温度由900℃升高到985℃,燃料反应器中CO体积份额逐渐增加,CO2体积份额逐渐减小,空气反应器中CO2浓度呈线性下降。燃料反应器温度的升高促进煤气化效率及碳捕集效率大大提高。载氧体量和系统负荷是煤气化产物转化效率的主要影响因素,载氧体量的增加和负荷的增加分别会使煤气化产物转化效率提高和下降。燃料反应器中的硫主要以SO2形式存在于燃料反应器,随温度的升高,SO2浓度由515×10-6逐渐增加到562×10-6相似文献   

18.
Chemical-looping combustion (CLC) has emerged as a promising option for CO2 capture because this gas is inherently separated from the other flue gas components and thus no energy is expended for the separation. This technology would have some advantages if it could be adapted for its use with coal as fuel. In this sense, a process integrated by coal gasification and CLC could be used in power plants with low energy penalty for CO2 capture. This work presents the results obtained in the combustion of syngas as fuel with a Ni-based oxygen carrier prepared by impregnation in a CLC plant under continuous operation. The effect on the oxygen carrier behaviour and the combustion efficiency of several operating conditions was determined in the continuous CLC plant. High combustion efficiencies (~99%), close to the values limited by thermodynamics, were reached at oxygen carrier-to-fuel ratios higher than 5. The temperature in the FR had a significant influence, although high efficiencies were obtained even at 1073 K. The syngas composition had small effect on the combustion, obtaining high and similar efficiencies with syngas fuels of different composition, even in the presence of high CO concentrations. The low reactivity of the oxygen carrier with CO seemed to indicate that the water gas shift reaction acts as an intermediate step in the global reaction of the syngas in a continuous CLC plant. Neither agglomeration nor carbon deposition problems were detected during 50 h of continuous operation in the prototype. The obtained results showed that the impregnated Ni-based oxygen carrier could be used in a CLC plant for the combustion of syngas produced in an integrated gasification combined cycle (IGCC).  相似文献   

19.
Rahul D. Solunke 《Fuel》2011,90(2):608-617
Chemical looping combustion (CLC) is an emerging technology for clean combustion. We have previously demonstrated that the embedding of metal nanoparticles into a nanostructured ceramic matrix can result in unusually active and sinter-resistant nanocomposite oxygen carrier materials for CLC which maintain high reactivity and high-temperature stability even when sulfur contaminated fuels are used in CLC. Here, we propose a novel process scheme for in situ desulfurization of syngas with simultaneous CO2-capture in chemical looping combustion by using these robust nanocomposite oxygen carriers simultaneously as sulfur-capture materials. We found that a nanocomposite Cu-BHA carrier can indeed strongly reduce the H2S concentration in the fuel reactor effluent. However, during the process the support matrix is also sulfidized and takes part in the redox process of CLC. This results in SO2 production during the reduction of the oxygen carrier and thus limits the degree of desulfurization attainable with this kind of carrier. Nevertheless, the results suggest that simultaneous desulfurization and CO2 capture in CLC is feasible with Cu as oxygen carrier as long as appropriate carrier support materials are chosen, and could result in a novel, strongly intensified process for low-emission, high efficiency combustion of sulfur contaminated fuel streams.  相似文献   

20.
采用Ontario-Hydro方法,在管式炉中考察了煤化学链燃烧/气化过程中Fe4Al6载氧体对煤中汞释放率、气态汞形态分布及汞在两反应器内释放行为的影响。结果表明,载氧体对煤中汞释放率具有显著的影响,在500~700℃,与无载氧体相比,化学链燃烧过程煤中汞释放率减少,化学链气化过程煤中汞释放率增大,而在900℃时,无论化学链燃烧过程还是化学链气化过程,煤中汞释放率均减小。Fe4Al6载氧体能够显著增加燃料反应器出口气态Hg2+的相对含量,其含量随温度的升高而逐渐升高。燃料反应器的温度也是影响煤中汞在两反应器中的分布以及空气反应器中不同价态汞百分含量的重要因素。此外,相同条件下不同煤种的汞释放率不同,主要与煤的组成不同有关。该研究对揭示载氧体对煤中汞迁移的影响机理以及煤化学链转化过程汞的控制提供了实验依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号