首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this article, a new hybrid method based on the combination of the genetic algorithm (GA) and artificial neural network (ANN) is developed to optimize the design of three-dimensional (3-D) radiant furnaces. A 3-D irregular shape design body (DB) heated inside a 3-D radiant furnace is considered as a case study. The uniform thermal conditions on the DB surfaces are obtained by minimizing an objective function. An ANN is developed to predict the objective function value which is trained through the data produced by applying the Monte Carlo method. The trained ANN is used in conjunction with the GA to find the optimal design variables. The results show that the computational time using the GA-ANN approach is significantly less than that of the conventional method. It is concluded that the integration of the ANN with GA is an efficient technique for optimization of the radiant furnaces.  相似文献   

2.
A new tire design procedure capable of determining the optimum tire construction was developed by combining a finite element method approach with mathematical programming and a genetic algorithm (GA). Both procedures successfully generated optimized belt structures. The design variables in the mathematical programming were belt angle and belt width. Using the merits of a GA which enabled the use of discrete variables, the design variables in the GA were not only the topology of the belt and belt angle but also the belt material. Furthermore, a discrete objective function such as the number of parts could be optimized in the GA. The optimized structure obtained by the GA was verified to increase the cornering stiffness more than 15 percent as compared with the control structure in an indoor drum test.  相似文献   

3.
Although object-oriented conceptual software design is difficult to learn and perform, computational tool support for the conceptual software designer is limited. In conceptual engineering design, however, computational tools exploiting interactive evolutionary computation (EC) have shown significant utility. This article investigates the cross-disciplinary technology transfer of search-based EC from engineering design to software engineering design in an attempt to provide support for the conceptual software designer. Firstly, genetic operators inspired by genetic algorithms (GAs) and evolutionary programming are evaluated for their effectiveness against a conceptual software design representation using structural cohesion as an objective fitness function. Building on this evaluation, a multi-objective GA inspired by a non-dominated Pareto sorting approach is investigated for an industrial-scale conceptual design problem. Results obtained reveal a mass of interesting and useful conceptual software design solution variants of equivalent optimality—a typical characteristic of successful multi-objective evolutionary search techniques employed in conceptual engineering design. The mass of software design solution variants produced suggests that transferring search-based technology across disciplines has significant potential to provide computationally intelligent tool support for the conceptual software designer.  相似文献   

4.
To facilitate the configuration selection of reconfigurable manufacturing systems (RMS) at the beginning of every demand period, it needs to generate K (predefined number) best configurations as candidates. This paper presents a GA-based approach for optimising multi-part flow-line (MPFL) configurations of RMS for a part family. The parameters of the MPFL configuration comprise the number of workstations, the number of paralleling machines and machine type as well as assigned operation setups (OSs) for each workstation. Input requirements include an operation precedence graph for each part, relationships between operations and OSs as well as machine options for each OS. The objective is to minimise the capital cost of MPFL configurations. A 0-1 nonlinear programming model is developed to handle sharing machine utilisation over consecutive OSs for each part which is ignored in the existing approach. Then a novel GA-based approach is proposed to identify K economical solutions within a refined solution space comprising the optimal configurations associated with all feasible OS assignments. A case study shows that the best solution found by GA is better than the optimum obtained by the existing approach. The solution comparisons between the proposed GA and a particle swarm optimisation algorithm further illustrate the effectiveness and efficiency of the proposed GA approach.  相似文献   

5.
This paper applies a Genetic Algorithm (GA) method to optimize injection moulding conditions, such as melt temperature, mould temperature and injection time. A GA is very suitable for moulding conditions optimization where complex patterns of local minima are possible. Existing work in the literature has limited versatility because the optimization algorithm is hard-wired with specific objective function. However, for most of the practical applications, the appropriateness of optimization objective functions depends on each specific moulding problem. The paper develops a multi-objective GA optimization strategy, where the objective functions may be defined by the designers, including using different criteria and/or weights. For parts with general quality requirements, an objective function is also recommended with some quality measuring criteria, which are either more accurately represented or cover more moulding defects than those from existing simulation-based optimization approaches. The paper also elaborates on the effective GA attributes suited to moulding conditions optimization, such as population size, crossover rate and mutation rate. A case study demonstrates the effectiveness of the proposed approach and algorithm. The optimization results are compared with those from an exhaustive search method to determine the algorithm's accuracy in finding global optimum. It is found to be favourable.  相似文献   

6.
The design of a cellular manufacturing system requires that a part population, at least minimally described by its use of process technology (part/machine incidence matrix), be partitioned into part families and that the associated plant equipment be partitioned into machine cells. At the highest level, the objective is to form a set of completely autonomous units such that inter-cell movement of parts is minimized. We present an integer program that is solved using a genetic algorithm (GA) to assist in the design of cellular manufacturing systems. The formulation uses a unique representation scheme for individuals (part/machine partitions) that reduces the size of the cell formation problem and increases the scale of problems that can be solved. This approach offers improved design flexibility by allowing a variety of evaluation functions to be employed and by incorporating design constraints during cell formation. The effectiveness of the GA approach is demonstrated on several problems from the literature.  相似文献   

7.
Determination of optimum hybrid laser–TIG welding process variables for achieving the maximum depth of penetration (DOP) in type 316LN stainless steel has been carried out using a genetic algorithm (GA). Nd:YAG pulsed laser and the TIG heat source were coupled at the weld pool to carry out hybrid welding. Design of experiments approach was used to generate the experimental design matrix. Bead-on-plate welds were carried out based on the design matrix. The input variables considered were laser power, pulse frequency, pulse duration, and TIG current. The response variable considered was the DOP. Multiple-regression model was developed correlating the process variables with the DOP using the generated data. The regression model was used for evaluating the objective function in GA. GA-based model was developed and it produced a set of solutions. Tournament and roulette wheel selection methods were used during the execution of GA. It was found that both the selection methods identified similar welding process parameters for achieving the maximum DOP. Excellent agreement was observed between the target DOP and the DOP values obtained in the validation experiments during hybrid laser–TIG welding.  相似文献   

8.
This paper proposes a multi-objective optimization model for redundancy allocation for multi-state series–parallel systems. This model seeks to maximize system performance utility while minimizing system cost and system weight simultaneously. We use physical programming as an effective approach to optimize the system structure within this multi-objective optimization framework. The physical programming approach offers a flexible and effective way to address the conflicting nature of these different objectives. Genetic algorithm (GA) is used to solve the proposed physical programming-based optimization model due to the following three reasons: (1) the design variables, the number of components of each subsystems, are integer variables; (2) the objective functions in the physical programming-based optimization model do not have nice mathematical properties, and thus traditional optimization approaches are not suitable in this case; (3) GA has good global optimization performance. An example is used to illustrate the flexibility and effectiveness of the proposed physical programming approach over the single-objective method and the fuzzy optimization method.  相似文献   

9.
基于神经网络响应面的复合材料结构优化设计   总被引:12,自引:4,他引:8       下载免费PDF全文
用正交试验设计的方法选择样本点构建神经网络响应面,将神经网络响应面作为优化的目标函数或约束条件,加上其它常规约束条件建立优化模型,应用遗传算法 (GA) 进行优化,形成一套适用于复杂结构设计的高效优化方法。以复合材料帽型加筋板的重量优化问题为例,建立了加筋板模型的重量响应面目标函数、强度和稳定性响应面约束条件;并用PATRAN/NASTRAN进行有限元计算,获取用于响应面训练的样本点数值。算例表明:该方法能以很少的有限元分析次数,取得高精度的响应面近似模型,并且使优化效率大大提高。   相似文献   

10.
In this paper, we consider multi-party coordination in a supply chain (SC) that consists of a set of independent producers and a set of resource managers. A decentralised decision-making approach is proposed for a coal SC, with three independent parties – multiple mines, a rail operator and a terminal. The rail operator and the terminal act as common resource managers and connects the independent mines via a rail network. The objective of this SC is to efficiently use an independent rail operator to transport coal from different mines to meet the shipping demand at the terminal. The underlying coordination problem can be seen as a multi-resource constrained scheduling problem. A major part of this paper addresses the key challenges in a decentralised approach based on column generation (CG), which are to compute the value of a column, better upper bounds and to update the multipliers using decentralised methods. We have also discussed the mathematical models for different decision units, the CG algorithm and different strengthening methods. A comprehensive computational experiment based on randomly generated instances highlights the effect of decentralisation and the value of information-sharing. The proposed solution approaches can be extended to a multi-party case with any number of common resources.  相似文献   

11.
Affective design is an important aspect of new product development, especially for consumer products, to achieve a competitive edge in the marketplace. It can help companies to develop new products that can better satisfy the emotional needs of customers. However, product designers usually encounter difficulties in determining the optimal settings of the design attributes for affective design. In this article, a novel guided search genetic algorithm (GA) approach is proposed to determine the optimal design attribute settings for affective design. The optimization model formulated based on the proposed approach applied constraints and guided search operators, which were formulated based on mined rules, to guide the GA search and to achieve desirable solutions. A case study on the affective design of mobile phones was conducted to illustrate the proposed approach and validate its effectiveness. Validation tests were conducted, and the results show that the guided search GA approach outperforms the GA approach without the guided search strategy in terms of GA convergence and computational time. In addition, the guided search optimization model is capable of improving GA to generate good solutions for affective design.  相似文献   

12.
This paper presents a computational intelligence approach, which addresses the bullwhip effect in supply chains (SCs). A genetic algorithm (GA) is employed to reduce the bullwhip effect and cost in the MIT beer distribution game. The GA is used to determine the optimal ordering policy for members of the SC. The paper shows that the GA can reduce the bullwhip effect when facing deterministic and random customer demand combined with deterministic and random lead times. The paper then examines the effect of sales promotion on the ordering policies and shows that the bullwhip effect can be reduced, even when sales promotions occur in the SC.  相似文献   

13.
Recently, the applications of Blockchain technology have begun to revolutionise different aspects of supply chain (SC) management. Among others, Blockchain is a platform to execute the smart contracts in the SC as transactions. We develop and test a new model for smart contract design in the SC with multiple logistics service providers and show that this problem can be presented as a multi-processor flexible flow shop scheduling. A distinctive feature of our approach is that the execution of physical operations is modelled inside the start and completion of cyber information services. We name this modelling concept ‘virtual operation’. The constructed model and the developed experimental environment constitute an event-driven dynamic approach to task and service composition when designing the smart contract. Our approach is also of value when considering the contract execution stage. The use of state control variables in our model allows for operations status updates in the Blockchain that in turn, feeds automated information feedbacks, disruption detection and control of contract execution. The latter launches the re-scheduling procedure, comprehensively combining planning and adaptation decisions within a unified methodological framework of dynamic control theory. The modelling complex developed can be used to design and control smart contracts in the SC.  相似文献   

14.
Supply chain (SC) models play an important role in supply chain management (SCM) for reducing costs and finding better ways to create and deliver value to customers. An approach to deriving the membership function of the fuzzy minimum total cost of the multi-product, multi-echelon, and multi-period SC model with fuzzy parameters is proposed in this article. On the basis of α-cut representation and the extension principle, a pair of mathematical programs are formulated to calculate the lower and upper bounds of the fuzzy minimum total cost at possibility level α. The membership function of the fuzzy minimum total cost is constructed by enumerating different values of α. To demonstrate the validity of the proposed procedure, a four-echelon five-period SC model with fuzzy parameters is solved successfully. Since the objective value is expressed by membership functions rather than by crisp values, they completely conserve the fuzziness of input information when some of the SC data are ambiguous. Thus the proposed approach can represent SCs with fuzzy parameters more accurately, and more information is provided for designing SCs in real-world applications.  相似文献   

15.
The bullwhip effect (BWE) is a phenomenon, which is caused by ineffective inventory decisions made by supply chain members. In addition to known inefficiencies caused by the bullwhip effect within a supply chain product flow, such as excessive inventory, it can also lead to inefficiencies in cash flow such as the cash flow bullwhip (CFB). The CFB reduces the efficiency of the supply chain (SC) through heterogeneous distribution of cash among supply chain members. This paper aims to decrease both the BWE and the CFB across a SC through applying a simulation-based optimisation approach, which integrates system dynamics (SD) simulation and genetic algorithms. For this purpose, cash flow modelling is incorporated into the SD structure of the beer distribution game (BG) to develop the CFB function. A multi objective optimisation model is then integrated with the SD-BG simulation model. Finally, a genetic algorithm (GA) is applied to determine the optimal values for the inventory, supply line, and financial decision parameters. Results show that the proposed integrated framework leads to efficient liquidity management in the SC in addition to cost management.  相似文献   

16.
This paper presents a new approach of genetic algorithm (GA) to solve the constrained optimization problem. In a constrained optimization problem, feasible and infeasible regions occupy the search space. The infeasible regions consist of the solutions that violate the constraint. Oftentimes classical genetic operators generate infeasible or invalid chromosomes. This situation takes a turn for the worse when infeasible chromosomes alone occupy the whole population. To address this problem, dynamic and adaptive penalty functions are proposed for the GA search process. This is a novel strategy because it will attempt to transform the constrained problem into an unconstrained problem by penalizing the GA fitness function dynamically and adaptively. New equations describing these functions are presented and tested. The effects of the proposed functions developed have been investigated and tested using different GA parameters such as mutation and crossover. Comparisons of the performance of the proposed adaptive and dynamic penalty functions with traditional static penalty functions are presented. The result from the experiments show that the proposed functions developed are more accurate, efficient, robust and easy to implement. The algorithms developed in this research can be applied to evaluate environmental impacts from process operations.  相似文献   

17.
This paper presents a new mixed-integer non-linear programming model for designing the group layout (GL) of unequal-area facilities in a cellular manufacturing system (CMS) under a dynamic environment. There are some features that make the presented model different from the previous studies. These include: (1) manufacturing cells with variable numbers and shapes, (2) machine depot keeping idle machines, (3) machines of unequal-areas, (4) manufacturing cells with rectangle regular shapes established on the continuous shop floor and (5) integration of cell formation and GL as interrelated decisions involved in the design of a CMS in a dynamic environment. The objective function is to minimises the total costs of intra- and inter-cell material handling, machine overhead, machine relocation, machine processing, purchasing machines and forming cells. Since the problem is NP-hard, an efficient simulated annealing (SA) algorithm is developed to solve the presented model. The performance of this model is illustrated by two numerical examples. It is then tested using several test problems with different sizes and settings to verify the computational efficiency of the developed algorithm in comparison to the classical genetic algorithm (GA). The obtained results show that the quality of the solutions obtained by SA is better than GA.  相似文献   

18.
Instead of using expensive multiprocessor supercomputers, parallel computing can be implemented on a cluster of inexpensive personal computers. Commercial accesses to high performance parallel computing are also available on the pay-per-use basis. However, literature on the use of parallel computing in production research is limited. In this paper, we present a dynamic cell formation problem in manufacturing systems solved by a parallel genetic algorithm approach. This method improves our previous work on the use of sequential genetic algorithm (GA). Six parallel GAs for the dynamic cell formation problem were developed and tested. The parallel GAs are all based on the island model using migration of individuals but are different in their connection topologies. The performance of the parallel GA approach was evaluated against a sequential GA as well as the off-shelf optimization software. The results are very encouraging. The considered dynamic manufacturing cell formation problem incorporates several design factors. They include dynamic cell configuration, alternative routings, sequence of operations, multiple units of identical machines, machine capacity, workload balancing, production cost and other practical constraints.  相似文献   

19.
The transformer manufacturing cost minimisation (TMCM), also known as transformer design optimisation, is a complex constrained mixed-integer non-linear programming problem with discontinuous objective function. This paper proposes an innovative method combining genetic algorithm (GA) and finite element method (FEM) for the solution of TMCM problem. The main contributions of the proposed method are: (a) introduction of an innovative recursive GA with a novel external elitism strategy associated with variable crossover and mutation rates resulting in an improved GA, (b) adoption of two particular finite element models of increased accuracy and high computational speed for the validation of the optimal design by computing the no-load loss and impedance and (c) combination of the innovative recursive GA with the two particular finite element models resulting in a proposed GA-FEM model that finds the global optimum, as concluded after several tests on actual transformer designs, while other existing methods provided suboptimal solutions that are 3.1?5.8% more expensive than the optimal solution.  相似文献   

20.
A comparative study between the conventional goal attainment strategy and an evolutionary approach using a genetic algorithm has been conducted for the multiobjective optimization of the strength and ductility of low-carbon ferrite-pearlite steels. The optimization is based upon the composition and microstructural relations of the mechanical properties suggested earlier through regression analyses. After finding that a genetic algorithm is more suitable for such a problem, Pareto fronts have been developed which give a range of strength and ductility useful in alloy design. An effort has been made to optimize the strength ductility balance of thermomechanically-processed high-strength multiphase steels. The objective functions are developed from empirical relations using regression and neural network modeling, which have the capacity to correlate high number of compositional and process variables, and works better than the conventional regression analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号