首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 658 毫秒
1.
This paper presents different methods for solving parallel machine scheduling problems with precedence constraints and setup times between the jobs. These problems are strongly NP-hard and it is even conjectured that no list scheduling algorithm can be defined without explicitly considering jointly scheduling and resource allocation. We propose dominance conditions based on the analysis of the problem structure and an extension to setup times of the energetic reasoning constraint propagation algorithm. An exact branch-and-bound procedure and a climbing discrepancy search (CDS) heuristic based on these components are defined. We show how the proposed dominance rules can still be valid in the CDS scheme. The proposed methods are evaluated on a set of randomly generated instances and compared with previous results from the literature and those obtained with an efficient commercial solver. We conclude that our propositions are quite competitive and our results even outperform other approaches in most cases.  相似文献   

2.
We investigate the problem of scheduling n jobs in s-stage hybrid flowshops with parallel identical machines at each stage. The objective is to find a schedule that minimizes the sum of weighted completion times of the jobs. This problem has been proven to be NP-hard. In this paper, an integer programming formulation is constructed for the problem. A new Lagrangian relaxation algorithm is presented in which precedence constraints are relaxed to the objective function by introducing Lagrangian multipliers, unlike the commonly used method of relaxing capacity constraints. In this way the relaxed problem can be decomposed into machine type subproblems, each of which corresponds to a specific stage. A dynamic programming algorithm is designed for solving parallel identical machine subproblems where jobs may have negative weights. The multipliers are then iteratively updated along a subgradient direction. The new algorithm is computationally compared with the commonly used Lagrangian relaxation algorithms which, after capacity constraints are relaxed, decompose the relaxed problem into job level subproblems and solve the subproblems by using the regular and speed-up dynamic programming algorithms, respectively. Numerical results show that the new Lagrangian relaxation method produces better schedules in much shorter computation time, especially for large-scale problems.  相似文献   

3.
In this paper, we study re-entrant flow shop scheduling problems with the objective of minimizing total completion time. In a re-entrant scheduling problem, jobs may visit some machines more than once for processing. The problem is NP-hard even for machine number m=2. A heuristic algorithm is presented to solve the problem, in which an effective k-insertion technique is introduced as the improvement strategy in iterations. Computational experiments and analyses are performed to give guidelines of choosing parameters in the algorithm. We also provide a lower bound for the total completion time of the optimal solution when there are only two machines. Objective function values of the heuristic solutions are compared with the lower bounds to evaluate the efficiency of the algorithm. For randomly generated instances, the results show that the given heuristic algorithm generates solutions with total completion times within 1.2 times of the lower bounds in most of the cases.  相似文献   

4.
In this paper, it is investigated how to sequence jobs with fuzzy processing times and predict their due dates on a single machine such that the total weighted possibilistic mean value of the weighted earliness-tardiness costs is minimized. First, an optimal polynomial time algorithm is put forward for the scheduling problem when there are no precedence constraints among jobs. Moreover, it is shown that if general precedence constraints are involved, the problem is NP-hard. Then, four reduction rules are proposed to simplify the constraints without changing the optimal schedule. Based on these rules, an optimal polynomial time algorithm is proposed when the precedence constraint is a tree or a collection of trees. Finally, a numerical experiment is given.  相似文献   

5.
This paper addresses a problem related to the classical job shop scheduling problem with two jobs. The problem consists in concurrently determining the best subset of machines to be duplicated and the optimal scheduling of the operations in order to minimize completion time. Such a problem arises in the tool management for a class of flexible manufacturing cells. The job shop with two jobs is first reviewed, the application of the classical search algorithm A* to this problem is discussed and its performance compared with a previous approach. The complexity of the machine duplication problem is then analysed. The problem is proved to be in general NP-hard in the strong sense, but in a class of special cases, relevant from the applications viewpoint, it can be solved in polynomial time by a dynamic programming algorithm. A heuristic based on such an algorithm and on A* is proposed for the general problem; the results are satisfactory in terms of both efficiency and quality of the solution.  相似文献   

6.
In this paper, a three-machine permutation flow shop scheduling problem with time-dependent processing times is considered. By the time-dependent processing times we mean that the job's processing time is an increasing function of its starting time. The objective is to find a sequence that minimizes the makespan. This problem is well known to be NP-hard. Several dominance properties and a lower bound are derived to speed up the elimination process of a branch-and-bound algorithm. Moreover, two heuristic algorithms are proposed to overcome the inefficiency of the branch-and-bound algorithm. Computational experiments on randomly generated problems are conducted to evaluate the branch-and-bound algorithm and heuristic algorithm. Computational results show that the proposed heuristic algorithm M-NEH perform effectively and efficiently.  相似文献   

7.
Due date assignment scheduling problems with deterministic and stochastic parameters have been studied extensively in recent years. In this paper, we consider a single machine due date assignment scheduling problem with uncertain processing times and general precedence constraint among the jobs. The processing times of the jobs are assumed to be fuzzy numbers. We first propose an optimal polynomial time algorithm for the problem without precedence constraints among jobs. Then, we show that if general precedence constraint is involved, the problem is NP-hard. Finally, we show that if the precedence constraint is a tree or a collection of trees, the problem is still polynomially solvable.  相似文献   

8.
In this paper, we consider a two-machine flow shop scheduling problem with deteriorating jobs. By a deteriorating job, we mean that the processing time is a decreasing function of its execution start time. A proportional linear decreasing deterioration function is assumed. The objective is to find a sequence that minimizes total completion time. Optimal solutions are obtained for some special cases. For the general case, several dominance properties and some lower bounds are derived to speed up the elimination process of a branch-and-bound algorithm. A heuristic algorithm is also proposed to overcome the inefficiency of the branch-and-bound algorithm. Computational results for randomly generated problem instances are presented, which show that the heuristic algorithm effectively and efficiently in obtaining near-optimal solutions.  相似文献   

9.
A heuristic-based optimization algorithm is proposed in this paper for on-line scheduling and assignment of preventive maintenance jobs to processors, to minimize under availability constraints, on a given time-window, the total cost of the maintenance operations of a distributed system. This algorithm minimizes the cost of discharge of preventive maintenance tasks or jobs, while assigning the tasks along with balancing the processors load. It is shown that the problem is NP-hard. To solve it, the concept of job emergency is introduced and the priority rule for total flow time (PRTF) criterion is used in an adapted heuristic job-scheduling model. In addition, the algorithm considers the constraints of precedence among consecutive standby jobs and their emergency. It is depicted the specific properties of the proposed heuristic allowing jobs scheduling in the right order. Computational results illustrate the efficiency of the approach implemented on different system configurations.  相似文献   

10.
This paper examines the problem of scheduling two-machine no-wait open shops to minimize makespan. The problem is known to be strongly NP-hard. An exact algorithm, based on a branch-and-bound scheme, is developed to optimally solve medium-size problems. A number of dominance rules are proposed to improve the search efficiency of the branch-and-bound algorithm. An efficient two-phase heuristic algorithm is presented for solving large-size problems. Computational results show that the branch-and-bound algorithm can solve problems with up to 100 jobs within a reasonable amount of time. For large-size problems, the solution obtained by the heuristic algorithm has an average percentage deviation of 0.24% from a lower bound value.  相似文献   

11.
In this paper, we discuss a scheduling problem for parallel batch machines where the jobs have ready times. Problems of this type can be found in semiconductor wafer fabrication facilities (wafer fabs). In addition, we consider precedence constraints among the jobs. Such constraints arise, for example, in scheduling subproblems of the shifting bottleneck heuristic when complex job shop scheduling problems are tackled. We use the total weighted tardiness as the performance measure to be optimized. Hence, the problem is NP-hard and we have to rely on heuristic solution approaches. We consider a variable neighborhood search (VNS) scheme and a greedy randomized adaptive search procedure (GRASP) to compute efficient solutions. We assess the performance of the two metaheuristics based on a large set of randomly generated problem instances and based on instances from the literature. The obtained computational results demonstrate that VNS is a very fast heuristic that quickly leads to high-quality solutions, whereas the GRASP is slightly outperformed by the VNS approach. However, the GRASP approach has the advantage that it can be parallelized in a more natural manner compared to VNS.  相似文献   

12.
Scheduling a Single Server in a Two-machine Flow Shop   总被引:1,自引:0,他引:1  
We study the problem of scheduling a single server that processes n jobs in a two-machine flow shop environment. A machine dependent setup time is needed whenever the server switches from one machine to the other. The problem with a given job sequence is shown to be reducible to a single machine batching problem. This result enables several cases of the server scheduling problem to be solved in O(n log n) by known algorithms, namely, finding a schedule feasible with respect to a given set of deadlines, minimizing the maximum lateness and, if the job processing times are agreeable, minimizing the total completion time. Minimizing the total weighted completion time is shown to be NP-hard in the strong sense. Two pseudopolynomial dynamic programming algorithms are presented for minimizing the weighted number of late jobs. Minimizing the number of late jobs is proved to be NP-hard even if setup times are equal and there are two distinct due dates. This problem is solved in O(n 3) time when all job processing times on the first machine are equal, and it is solved in O(n 4) time when all processing times on the second machine are equal. Received November 20, 2001; revised October 18, 2002 Published online: January 16, 2003  相似文献   

13.
最近Chou、Queyranne和Simchi—Levi,Liu分别证明了恒速平行机调度问题和Flow shop调度问题的基于有效作业加权最短处理时间的启发式算法是渐近最优的。本文使用分组机器模型的方法证明:即使对于多机Flow shop加权完成时间调度问题,基于有效作业加权最短处理时间的启发式算法也是渐近最优的。关键词调度,多机Flow shop调度,启发式算法,渐近最优分析  相似文献   

14.
In this paper, we consider an identical parallel machine scheduling problem with release dates. The objective is to minimize the total weighted completion time. This problem is known to be strongly NP-hard. We propose some dominance properties and two lower bounds. We also present an efficient heuristic. A branch-and-bound algorithm, in which the heuristic, the lower bounds and the dominance properties are incorporated, is proposed and tested on a large set of randomly generated instances.  相似文献   

15.
We consider two single machine bicriteria scheduling problems in which jobs belong to either of two different disjoint sets, each set having its own performance measure. The problem has been referred to as interfering job sets in the scheduling literature and also been called multi-agent scheduling where each agent's objective function is to be minimized. In the first problem (P1) we look at minimizing total completion time and number of tardy jobs for the two sets of jobs and present a forward SPT-EDD heuristic that attempts to generate the set of non-dominated solutions. The complexity of this specific problem is NP-hard; however some pseudo-polynomial algorithms have been suggested by earlier researchers and they have been used to compare the results from the proposed heuristic. In the second problem (P2) we look at minimizing total weighted completion time and maximum lateness. This is an established NP-hard problem for which we propose a forward WSPT-EDD heuristic that attempts to generate the set of supported points and compare our solution quality with MIP formulations. For both of these problems, we assume that all jobs are available at time zero and the jobs are not allowed to be preempted.  相似文献   

16.
The multiprocessor scheduling problem is the problem of scheduling the tasks of a precedence constrained task graph (representing a parallel program) onto the processors of a multiprocessor in a way that minimizes the completion time. Since this problem is known to be NP-hard in the strong sense in all but a few very restricted eases, heuristic algorithms are being developed which obtain near optimal schedules in a reasonable amount of computation time. We present an efficient heuristic algorithm for scheduling precedence constrained task graphs with nonnegligible intertask communication onto multiprocessors taking contention in the communication channels into consideration. Our algorithm for obtaining satisfactory suboptimal schedules is based on the classical list scheduling strategy. It simultaneously exploits the schedule-holes generated in the processors and in the communication channels during the scheduling process in order to produce better schedules. We demonstrate the effectiveness of our algorithm by comparing with two competing heuristic algorithms available in the literature  相似文献   

17.
In this paper, we consider two new types of the two-machine flowshop scheduling problems where a batching machine is followed by a single machine. The first type is that normal jobs with transportation between machines are scheduled on the batching and single machines. The second type is that normal jobs are processed on the batching machine while deteriorating jobs are scheduled on the single machine. For the first type, we formulate the problem to minimize the makespan as a mixed integer programming model and prove that it is strongly NP-hard. Furthermore, a heuristic algorithm along with a worst case error bound is derived and the computational experiments are also carried out to verify the effectiveness of the proposed heuristic algorithm. For the second type, the two objectives are considered. For the problem with minimizing the makespan, we find an optimal polynomial algorithm. For the problem with minimizing the sum of completion time, we show that it is strongly NP-hard and propose an optimal polynomial algorithm for its special case.  相似文献   

18.
Advanced manufacturing technologies, such as CNC machines, require significant investments, but also offer new capabilities to the manufacturers. One of the important capabilities of a CNC machine is the controllable processing times. By using this capability, the due date requirements of customers can be satisfied much more effectively. Processing times of the jobs on a CNC machine can be easily controlled via machining conditions such that they can be increased or decreased at the expense of tooling cost. Since scheduling decisions are very sensitive to the processing times, we solve the process planning and scheduling problems simultaneously. In this study, we consider the problem of scheduling a set of jobs on a single CNC machine to minimize the sum of total weighted tardiness, tooling and machining costs. We formulated the joint problem, which is NP-hard since the total weighted tardiness problem (with fixed processing times) is strongly NP-hard alone, as a nonlinear mixed integer program. We proposed a DP-based heuristic to solve the problem for a given sequence and designed a local search algorithm that uses it as a base heuristic.  相似文献   

19.
The order in which jobs pass through machines or work centres is a sequencing problem. The sequencing problems occur in flow shop as well as job shop production systems. In flow shop production systems, each job follows the same processing route whereas in the job shop production system, jobs flow across machines or work stations on many different routes. For optimizing the sequencing of such jobs, production planners may adopt different criteria such as makespan time, average completion time, due date performance, machine utilization and so forth. In the absence of given criteria, it is usual to accept the makespan time as the criteria and to attempt to minimize this. In a 2-machines flow shop, the jobs can be sequenced optimally for minimum total makespan time by using Johnson's algorithm [1]. Johnson's algorithm can also be used to find the optimal sequence for special three-machines flow shop problems satisfying certain conditions [1]. But for general three-machines sequencing problems, optimal sequence based on makespan time can be obtained by using a branch and bound solution procedure [1].

In this paper, the branch-and-bound procedure have been used to develop an interactive program in BASIC for finding the optimal job sequence for general three-machines flow shop problems. This program which is written for an IBM-PC or IBM-PC compatibles, also provides the time chart and the time chart drawing. Furthermore, it gives the results of the branching steps (i.e the partial sequences) in a tabular form.  相似文献   


20.
The practical solutions for three manufacturing scheduling problems are examined. As each problem is formulated, constraints are added or modified to reflect increasing real world complexity. The first problem considers scheduling single-operation jobs on identical machines. The second problem is concerned with scheduling multiple-operation jobs with simple fork/join precedence constraints on identical machines. The third problem is the job shop problem in which multiple-operation jobs with general precedence constraints are scheduled on multiple machine types Langrangian relaxation is used to decompose each of the scheduling problems into job- or operation-level subproblems. The subproblems are easier to solve than the original problem and have intuitive appeal. This technique results in algorithms which generate near-optimal schedules efficiently, while giving a lower bound on the optimal cost. In resolving the scheduling problem from one time instant to the next, the Lagrange multipliers from the last schedule can be used to initialize the multipliers, further reducing the computation time  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号