首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferroelectric thin films of Ba0.7Sr0.3TiO3, Ba0.8Sr0.2TiO3, Ba0.9Sr0.1TiO3 and BaTiO3 were fabricated by a modified sol-gel technique on Pt/Ti/SiO2/Si substrates. All the compositions crystallized in perovskite structure and consist of well-defined grains. As the value of x increases grain size of the BaxSr1−xTiO3 thin films increases while the dielectric permittivity decreases. Ba0.7Sr0.3TiO3 composition possesses the highest dielectric permittivity of 748 (at 100 kHz). Hysteresis loops measured at room temperature for all compositions showed that BaTiO3 has the largest remnant polarization of 4.8 μC/cm2. The dielectric and ferroelectric properties of the sol-gel derived BaxSr1−xTiO3 thin films are strongly dependent on the Sr content and the grain size.  相似文献   

2.
Ba0.5Sr0.5TiO3, Ba0.6Sr0.4TiO3, Ba0.7Sr0.3TiO3 and Ba0.8Sr0.2TiO3 thin films were fabricated by a modified sol-gel technique on Pt(111)/Ti/SiO2/Si(100) substrates. All Ba x Sr1–x TiO3 films crystallized in the perovskite structure with a crack free microstructure and clear grain boundaries. Highest relative permittivity and dielectric tunability was observed in the Ba0.7Sr0.3TiO3 thin film. Ba0.7Sr0.3TiO3 and Ba0.8Sr0.2TiO3 compositions demonstrated ferroelectric hysteresis loops indicating the presence of ferroelectricity at room temperature. The paraelectric compositions of Ba0.5Sr0.5TiO3 and Ba0.6Sr0.4TiO3 showed significant tunability with negligible loss tangent. The tunability of Ba0.5Sr0.5TiO3 thin film decreased with the increase of frequency from 100 kHz to 100 MHz. As the frequency increases, especially above 10 MHz, the relative permittivity decreases while the loss tangent increases. Since Ba0.5Sr0.5TiO3 thin film is paraelectric at room temperature, relaxation due to ferroelectric domains cannot occur. Therefore this behaviour has originated from the contact resistance and finite sheet resistance of both the bottom and top electrodes. To analyse the thin film capacitor, the parallel plate capacitor structure can be modeled based on an equivalent circuit, which contain electrode and contact resistance.  相似文献   

3.
Ping He 《Materials Letters》2008,62(14):2157-2160
Nano-sized calcium strontium titanate (Sr0.7Ca0.3TiO3) particles were prepared by low temperature aqueous synthesis method at temperature as low as 90 °C and under ambient pressure. To improve the morphology and crystallinity of the particles, the hydrothermal treatment was used. The lattice structure, particle size, particle morphology, and hydroxyl defects of Sr0.7Ca0.3TiO3 particles were investigated by using XRD, TEM, FE-SEM, TG and FT-IR measurements. The as-prepared particles with size about 100 nm were single cubic phase crystallines which consist of aggregates of small rounded nanocrystals about 10 nm in diameter. However, in as-prepared crystallines, a hydroxyl group was detected as a lattice defect. After the hydrothermal treatment, the hydroxyl groups in Sr0.7Ca0.3TiO3 nanoparticles were partially released from the perovskite lattice. The morphology and crystallinity of the hydrothermally treated particles were observably improved.  相似文献   

4.
The paper presents synthesis of Ba0.7Sr0.3TiO3 (BST), Ba0.7Sr0.3TiO3 (BZT) thin films and BZT/BST heterostructures using modified Pechini method. The La0.7Sr0.3MnO3 has been used as a conducting bottom layer to form metal ferroelectric metal capacitor. The thin films are spin coated on SiO2/n-Si (100) substrates. The thin films thus deposited are characterized for crystal structure, morphology, dielectric and complex impedance properties. The results show that BZT/BST heterostructures show reduced loss tangent tan δ and useful value of figure of merit γ in RF range of frequencies. The results on dielectric properties could be analyzed in terms of the Maxwell–Wagner Model and contribution due to superlattice effects.  相似文献   

5.
A kind of lead-free ferroelectric nanorods, (K0.5Bi0.5)0.4Ba0.6TiO3, has been prepared by the sol-gel process. The phase formation, structure and morphological analyses of (K0.5Bi0.5)0.4Ba0.6TiO3 were investigated by XRD, FTIR, Raman and TEM. The results revealed that single-crystalline (K0.5Bi0.5)0.4Ba0.6TiO3 nanorods with width around 80 to 120 nm, and length around 200-300 nm were obtained by calcining dried gels at 800 °C for 2 h. Raman analysis of (K0.5Bi0.5)0.4Ba0.6TiO3 nanorods indicated that A1(TO2) and E(TO) mode incorporated into one broad peak at around 285 cm 1, which can be attributed to the cation disorder (Bi, K, Ba) on the 12-fold coordinated A site of ABO3 structure.  相似文献   

6.
A simple sol–gel process incorporating slow precursor injection technique was employed to synthesize homogeneous Ba0.5Sr0.5TiO3 nano powders. The Ba0.5Sr0.5TiO3 samples were subjected to calcination temperatures from 600 to 1,100 °C and sintering temperatures from 1,250 to 1,350 °C for the study of phase formation, crystallite size, particle distribution, and dielectric properties. Single phase Ba0.5Sr0.5TiO3 with a cubic perovskite structure was successfully synthesized after calcination at 800 °C. The average size of the nano particles is 42 nm with a narrow size distribution, and a standard deviation of 10%. The highest values recorded within the investigated range for dielectric constant, and dielectric loss measured at 1 kHz are 1,164 and 0.063, respectively, for Ba0.5Sr0.5TiO3 pellets calcined at 800 °C and sintered at 1,350 °C. Leakage current density measured at 5 V for the Ba0.5Sr0.5TiO3 pellet was found to be 49.4 pA/cm2.  相似文献   

7.
Ternary (Ba0.6Sr0.4)1−xCaxTiO3 (BSCT) (x = 0, 0.1, 0.2, 0.3 and 0.4) thin films with thickness of around 500 nm were prepared on Pt(111)/TiO2/SiO2/Si substrates by sol-gel methods. BSCT forms the complete solid solutions in a single cubic perovskite structure. The lattice constant, dielectric constant, tanδ and tunability of BSCT decrease, whereas the temperature stability of dielectric properties increases with increasing the Ca concentration. From 25 to 100 °C, the decrease of tunability is about 11% for BSCT with 40 at.% of Ca. BSCT thin films exhibit the comparable tunability, low loss and enhanced temperature stability.  相似文献   

8.
The magnetic and magnetoelectric properties of magnetoelectric (ME) composites consisting of with nickel ferrite (NiFe2O4) and barium strontium titanate (Ba0.7Sr0.3TiO3) were investigated. The composites were prepared by standard double sintering ceramic method. The X-ray diffraction analysis was carried out to confirm the phases formed during sintering and also to calculate the lattice parameters. The hysteresis measurements were done to determine saturation magnetization (Ms), remenance magnetization (Mr) and coercivity (Hc) of the samples. The magnetoelectric voltage coefficient (dE/dH)H was studied as a function of intensity of the magnetic field. The measured magnetoelectric (ME) response demonstrated strong dependence on the volume fraction of NiFe2O4 and the applied magnetic field. A large ME voltage coefficient of about 560 μVcm−1Oe−1 was observed for 15% NiFe2O4 + 85% Ba0.7Sr0.3TiO3 composite.  相似文献   

9.
Polymer assisted deposition is a versatile technique to grow simple and complex metal-oxide thin films. In this paper we report the structural and electrical properties of ferroic materials, namely La0.67M0.33MnO3 (M = Sr and Ca) and Ba1 − xSrxTiO3 (x = 0.3, 0.5, and 0.7) prepared using this process. The films were prepared on single crystalline LaAlO3 substrates. The films were highly c-axis oriented and epitaxial in nature. The ferromagnetic La0.67Sr0.33MnO3 and La0.67Ca0.33MnO3 films show intrinsic transport properties with maximum magnetoresistance values (at applied field of 5 T) of − 50% and − 88%, respectively. The highest dielectric constant (∼ 1010) and tunability (∼ 69%) of Ba1 − xSrxTiO3 film occurs at x = 0.3 for films, which is at the phase boundary of tetragonal and cubic.  相似文献   

10.
A modified sol-gel method was used to fabricate (Pb0.25Bax Sr0.75−x)TiO3 (PBST) thin films with x = 0.05,0.1,0.15 and 0.2 on Pt/TiO2/SiO2/Si substrate. The structure, surface morphology, dielectric and tunable properties of PBST thin films were investigated as a function of barium content (x). X-ray diffraction and scanning electron microscopy analysis showed that we could get pure PBST perovskite phase and relative fine density thin films with smooth surface. It was found that the crystal lattice constant, grain size, room temperature dielectric constant, dielectric loss and tunability of Ba solutionizing PST thin films increased with the increase in Ba content. For (Pb0.25Ba0.2Sr0.55)TiO3 thin film, it had the highest dielectric constant of 1390 and the largest tunability of 80.6%. The figure of merit parameter reached a maximal value of 28.9 corresponding to the (Pb0.25Ba0.05 Sr0.7)TiO3 thin film, whose dielectric constant, dielectric loss and tunability measured at 1 MHz were 627, 0.024 and 69.4%, respectively.  相似文献   

11.
A series of polycrystalline Sr0.7?xCa0.3BaxTiO3 (SCBT) (0.0  x  0.25) samples were synthesized through solid-state reaction method, and their microstructural, anti-ferroelectric (AFE), ferroelectric (FE), dielectric, and phase transition properties were investigated. With the incorporation of Ba2+ at Sr2+ site, the AFE polar phase (x = 0.0) has been sharply changed, experiencing AFE state, enhanced FE state, cooperative FE state, and normal FE state, owing to the competition and coupling interactions of different polar orderings in SCBT system. Note that excellent FE behavior has been found in the cooperative FE state. In addition, the critical region has been proposed in the T ? x phase diagram.  相似文献   

12.
Ba0.7Sr0.3TiO3 (BST) thin films were deposited on Pt and SrRuO3(SRO)/Pt hybrid bottom electrodes by radio frequency magnetron sputtering. X-ray analysis indicated that both films were polycrystalline. Dielectric measurements showed that the films on SRO/Pt hybrid bottom electrode had lower dielectric constant and loss than the films on single Pt and the dielectric properties were frequency-independent. The leakage current density of Ba0.7Sr0.3TiO3 thin films on hybrid bottom electrode was also lower. Leakage mechanism investigations showed that the contact between the electrode-film interfaces of thin films on SRO/Pt hybrid bottom electrode was ohmic. Based on the results, the effects of SRO/Pt hybrid bottom electrode on the crystallization and electrical properties of BST thin films were discussed.  相似文献   

13.
The perovskite La0.6Sr0.4M0.3Fe0.7O3?δ (M = Co, Ti) powders have been synthesized by the citrate gel method. The structural and chemical stability of the La0.6Sr0.4M0.3Fe0.7O3?δ (M = Co, Ti) oxides were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) techniques. The electrical conductivities of the sintered La0.6Sr0.4M0.3Fe0.7O3?δ (M = Co, Ti) ceramics were measured. The results demonstrate the chemical stability in H2/helium (He) atmosphere of the La0.6Sr0.4Ti0.3Fe0.7O3?δ oxide is improved significantly compared to that of the La0.6Sr0.4Co0.3Fe0.7O3?δ oxide. The incorporation of Ti3+/4+ ions in the perovskite structure can significantly stabilize the neighboring oxygen octahedral due to the stronger bonding strength, leading to the enhanced structural and chemical stability of the La0.6Sr0.4Ti0.3Fe0.7O3?δ. In addition, the perovskite La0.6Sr0.4M0.3Fe0.7O3?δ (M = Co, Ti) oxides possess much higher chemical stability in CO2/He atmosphere than that of Ba0.5Sr0.5Co0.8Fe0.2O3?δ oxide, in which the perovskite structure is destroyed completely in a flowing CO2-containing atmosphere.  相似文献   

14.
In microwave tunable devices, one of the major challenges encountered is the simultaneous minimization of the material's dielectric loss and maximization of dielectric tunability. In this work, Ba0.6Sr0.4TiO3 thin film with the thickness of 300 nm was deposited on Pt/SiO2/Si substrates using radio-frequency magnetron sputtering technique, and its dielectric properties were investigated. Due to the high temperature annealing process at substrate temperature of 600 °C, well-crystallized Ba0.6Sr0.4TiO3 film was deposited. The dielectric constant and dielectric loss of the film at 100 kHz are 300 and 0.033, respectively. Due to the good crystallinity of the Ba0.6Sr0.4TiO3 films deposited by radio-frequency magnetron sputtering, high dielectric tunability up to 38.3% is achieved at a low voltage of 4.5 V.  相似文献   

15.
Nano-sized Ba1−xSrxTiO3 (BST) powder was prepared by flame spray pyrolysis using “CA-assisted” spray solution. The effects of the mole ratios of Ba to Sr components on the mean sizes, morphologies, and crystal structures of the BST powder prepared by flame spray pyrolysis were investigated. The precursor powders obtained by flame spray pyrolysis had large size, fractured and hollow structures irrespective of the mole ratios of Ba to Sr components. The post-treated BST powders had slightly aggregated morphology of the primary particles with nanometer sizes. The slightly aggregated BST powders turned to nano-sized primary particles by a simple milling process. The milled BaTiO3 particles post-treated at temperature of 1000 °C had spherical-like shape. On the other hand, the milled Ba0.5Sr0.5TiO3 and SrTiO3 particles had square shape. The mean sizes of the milled BaTiO3, Ba0.5Sr0.5TiO3 and SrTiO3 particles were each 110, 32, and 48 nm. Phase pure BST powder was obtained at a post-treatment temperature of 1000 °C irrespective of the mole ratios of Ba to Sr components. The BaTiO3 powder had tetragonal crystal structure. On the other hand, the BST except for the BaTiO3 composition had cubic crystal structures at post-treatment temperature of 1000 °C. The mean crystallite sizes of the milled Ba1−xSrxTiO3 primary particles were changed from 29 to 37 nm according to the mole ratios of Ba to Sr components.  相似文献   

16.
The ceramic thin films have been fabricated by radio frequency (RF) magnetron sputtering technique on SiO2 (110) substrates with (Ba0.3Sr0.7)(Zn1/3Nb2/3)O3 target, and then the thin films were annealed at 1,150 °C for different times at O2 atmosphere. The microstructure and morphology of the thin films were investigated as a function of the annealing times using the X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy techniques. The results show that the microstructure, morphology, and crystallinity of the thin films can be affected by the annealing times significantly. The main phases of the samples are indexed to be Ba0.5Sr0.5Nb2O6 and Ba0.27Sr0.75Nb2O5.78, which are different from component of the (Ba0.3Sr0.7)(Zn1/3Nb2/3)O3 target due to the volatilization of ZnO. The crystalline quality of the thin films decreases when the annealing time is shorter or longer than 30 min, and the roughness and grain size of the thin films reaches a maximum value when the annealing time is 30 min.  相似文献   

17.
Ba0.6Sr0.4TiO3 (BST) and 0.06Nd(Zn1/2Ti1/2)O3–0.94Ba x Sr1?x TiO3 (NZT–BST) thin films with x = 0.6, 0.7, 0.75, and 0.8 were fabricated on Pt/Ti/SiO2/Si substrates by sol–gel method. The structures, surface morphology, dielectric, and ferroelectric properties, and thermal stability of BST and NZT–BST thin films were investigated as a function of NZT and Ba content. It was found that introducing NZT into BST decreased significantly dielectric loss, however, along with the tunability. On this basis, increasing Ba/Sr in NZT–BST thin films led to the simultaneous increase of dielectric constant and tunability of thin films. As a result, optimized dielectric and tunable properties were obtained for 0.06Nd(Zn1/2Ti1/2)O3–0.94Ba0.7Sr0.3TiO3 thin film with the highest FOM value of 43.22. It awakens us that, for reducing dielectric loss, introducing a certain amount of low permittivity oxides or non-ferroelectrics like NZT into weak ferroelectric perovskite tunable materials, not into paraelectric perovskite tunable materials, may obtain more excellent dielectric and tunable performances.  相似文献   

18.
The paper presents synthesis of Ba0.7Sr0.3TiO3 (BST), BaZr0.3Ti0.7O3 (BZT) and SrTiO3 (ST) thin films and their heterostructures using modified Pechini method. The La0.7Sr0.3MnO3 has been used as a conducting bottom layer to form metal ferroelectric metal capacitor. The thin films are spin coated on SiO2/n-Si(100) substrates. The thin films thus deposited are characterized for crystal structure, morphology, dielectric, complex impedance and admittance properties. Deposition of surface layer ST is observed to reduce loss tangent tan δ of BST and BZT thin films, still maintaining equivalent magnitude of figure of merit γ. The results on dielectric properties are analyzed in terms of the Maxwell–Wagner model and Koop’s phenomenological theory.  相似文献   

19.
Barium strontium titanate (BST) Ba1?x Sr x TiO3 nanopowders have been successfully synthesized using oxalate precursor route. The effect of Sr2+ ion content from 0.3 to 0.7 on the crystal structure, crystallite size, microstructure, electrical and optical properties was systematically studied. The results revealed that well crystalline single BST phase was formed by annealing the oxalate precursor at 1,000 °C for 2 h. The crystallite size of the BST powders was decreased with increasing the Sr2+ ion molar ratios. The crystallite size was decreased from 56.0 to 33.1 nm when the Sr2+ ion content increased from 0.3 to 0.7. Additionally, the lattice parameter (a), unit cell volume and X-ray density of BST ware decreased whereas the porosity, % were increased with Sr2+ ion concentration. The BST phase appeared as cubic-like structure. The spectrophotometer measurement results demonstrated that the room temperature band gap energy varied with the Sr2+ ion composition x. The band gap energy was shifted to low energy and it was decreased from 3.6 to 3.2 eV with increasing the Sr2+ ion content from 0.3 to 0.7. Moreover, the DC resistivity was enhanced with increasing the Sr2+ ion ratio. The dielectric response obtained for the stressed samples corresponds to a true resonance rather than a dispersion process with a characteristic frequency around 1 GHz at room temperature. However, the peaks commonly observed at GHz frequency were changed with varying the Sr2+ ion composition. The high imaginary components of dielectric permittivity for x = 0.3 was found at higher frequency region around 1.6 GHz compared with the samples with x values of 0.5 and 0.7 in which the frequency regions were around 1.25 and 1.15 GHz, respectively.  相似文献   

20.
Titanium modified Sr0.3Ba0.7Nb2O6 ceramic system has been studied in a wide range of compositions. As the sintering temperature exceeds the 1250 °C, the substitution of niobium by titanium induces liquid phase formation, which enhances the densities of the samples with compositions in the monophasic range. X-ray diffraction analysis shows a linear titanium incorporation into the Sr0.3Ba0.7Nb2−yTiyO6−y/2 system up to a solubility limit 0.07 < ym < 0.1, which it is also confirmed by the ferroelectric–paraelectric temperature transition. Both, the diffuse character of the system and the dielectric constant at room temperature increase as the Ti content increase. The dielectric constant (ɛr = 420) of the sample with a titanium content of 0.07 are two times higher than the reported for the SBN (30/70) system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号