首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
雷超  李克峰  王健  毛新华  邹黎明  谢焕文 《化工学报》2018,69(10):4471-4478
提出了一种以LDH (水滑石类化合物)为催化剂,纳米硅粉为原料,在N2-H2混合气氛下制备单晶a-Si3N4纳米线的CVD (化学气相沉积)方法。研究结果表明:当H2含量小于0.5%时,所制备的Fe/Mg/Al LDH催化剂具有优良的高温热稳定性,在1250℃下煅烧与还原后仍可保持自身结构完整与催化活性。通过降低还原温度与LDH中Fe含量、在LDH中引入Mo元素等手段,有效地降低金属Fe纳米晶粒直径、增大成核密度,所制备单晶a-Si3N4纳米线面密度可达5×1014~9×1014 m-2,直径为30~50 nm,长度达20~80 μm (长径比>1000)。进一步研究表明本实验中纳米线为VLS (气液固)生长机制。  相似文献   

2.
以硅粉和氮化硅铁颗粒为原料,经高纯氮气气氛下烧结,制备出氮化硅/氮化硅铁复合材料。将氮化硅/氮化硅铁复合材料试样分别在1 500、1 600、1 700℃氮气气氛下重烧,探究其高温稳定性。结果表明:当重烧温度为1 500℃时试样中存在的物相有β-Si_3N_4、α-Si_3N_4、Si_2N_2O、SiC以及Fe3Si;当重烧温度达到1 600℃时,β-Si_3N_4含量增加,Fe_3Si、Fe_5Si_3、FeSi_3种硅铁合金共存,α-Si_3N_4、Si_2N_2O消失;当重烧温度上升到1 700℃时,β-Si_3N_4含量显著下降并重新出现α-Si_3N_4,Fe_5Si_3和FeSi相共存,Fe_3Si相消失。结合热力学计算推断反应机理为:当重烧温度从1 500℃上升到1 600℃时,α-Si_3N_4、Fe–Si熔体中的Si以及Si_2N_2O均向β-Si_3N_4转变,导致β-Si_3N_4含量增加。当重烧温度上升到1 700℃过程中,熔融硅铁的存在加速了Si_3N_4的分解,导致β-Si_3N_4含量减少;试样冷却过程中,Si(l)、Si(g)将重新氮化形成氮化硅,使α-Si_3N_4重新出现。SiC在较高的温度下比Si_3N_4稳定,其反应的C源为结合剂中的残C,以及气氛中的CO。随温度升高,复合材料中Fe–Si合金的稳定顺序依次为:Fe3Si→Fe_5Si_3→FeSi。  相似文献   

3.
以α-Si_3N_4粉和黑刚玉为原料、Gd_2O_3为烧结助剂,采用无压烧结工艺制备了O’-Sialon/Si_3N_4复相陶瓷材料,研究了Gd_2O_3添加量和烧结温度对样品性能、相组成和显微结构的影响,探讨了Gd_2O_3对复相陶瓷的作用机理。结果表明:复相陶瓷主晶相为α-Si_3N_4、β-Si_3N_4和O’-Sialon,添加Gd_2O_3一方面可在高温烧结过程中形成液相,促进α-Si_3N_4的"溶解–析出"过程,有利于α-Si_3N_4向β-Si_3N_4的晶型转变以及β-Si_3N_4晶粒的生长;另一方面可促进α-Si_3N_4与Al_2O_3和Si O_2的固溶反应,生成O’-Sialon相,使样品中O’-Sialon含量增加。当Gd_2O_3添加量为6%(质量分数)时,经1 600℃烧结的样品SN-G6性能最佳:气孔率为23.29%;体积密度为2.31 g·cm~(–3);抗折强度达到105.57 MPa。  相似文献   

4.
为了综合利用晶体硅金刚线切割废料,以其为原料,使用卧式氮化炉进行氮化反应,研究了氮化温度(1 300、1 350、1 400、1 450和1 500℃)、氮化保温时间(1、1. 5、2、2. 5和3 h)以及α-Si_3N_4外加量(外加质量分数分别为0、5%、10%、15%和20%)对氮化反应的影响。结果表明:在一定范围内,氮化温度的升高有利于α-Si_3N_4、β-Si_3N_4和Si_2N_2O三种物相的生成;氮化时间的延长有利于α-Si_3N_4、β-Si_3N_4和Si_2N_2O三种物相的生成,但氮化时间过长会导致α-Si_3N_4转变为β-Si_3N_4,以及Si_2N_2O转化为Si_3N_4;以α-Si_3N_4为添加剂,有利于α-Si_3N_4的生成以及氮化反应的进行。综合考虑切割废料的氮化程度,较优氮化条件为1 400℃保温3 h,α-Si_3N_4添加剂外加量10%(w)。  相似文献   

5.
采用电化学电位阶跃技术(CA),在GC基底上制备出Fe3O4纳米粒子电催化剂;通过SEM和TEM对其表面形貌进行表征。结果表明,所制备的Fe3O4纳米粒子呈纳米片状结构,且分布较均匀,片的厚度约为10nm。选区电子衍射(SAED)结果显示,片状结构的Fe3O4为多晶结构。所制得的Fe3O4纳米粒子具有类似天然过氧化物酶活性,对H2O2的还原过程具有很好的电催化性能,是很好的电化学传感器。该传感器具有较好的电化学灵敏度,最低检测限为5×10-5mol·L-1(S/N=3),线性范围为4×10-4~7×10-2mol·L-1。  相似文献   

6.
以闪速燃烧法合成的不同粒度的氮化硅铁颗粒(w(Si)=48.76%,w(N)=30.65%,w(Fe)=14.15%,w(O)=2.2%,w(Al)=0.8%)作为骨料,以粒度≤0.088 mm的氮化硅铁粉和Si粉(w(Si)=98.22%,w(Al)=0.15%)作为细粉,经混料、困料、成型、干燥和1 450℃保温24 h氮化烧成等工艺,制备了以Si_3N_4为主晶相的新型氮化硅质耐火材料。检测结果表明:所制备试样的显气孔率为29.2%,体积密度为2.39g·cm~(- 3),常温耐压强度为151 MPa,常温抗折强度为40.3 MPa,1 400℃高温抗折强度为12.2 MPa;其物相组成(w)为:β-Si_3N_472.03%,α-Si_3N_49.20%,Si_2N_2O 6.23%,Fe3Si 11.60%,Si O_20.94%。在高温条件下,随着体系中氧分压的不断降低,絮状的Si_2N_2O和Si_3N_4结合相主要由体系气相组分中的Si O、Si蒸气与N2、O_2反应形成。  相似文献   

7.
以α-Si_3N_4粉末为原料、Al_2O_3–RE_2O_3(RE=Lu,Y,Gd和La)为烧结助剂,在1 800℃压烧结制备氮化硅陶瓷,研究了不同烧结助剂对材料的相组成、微观结构和力学性能的影响。结果表明:样品中α-Si_3N_4完全转化为β-Si_3N_4,所形成的长柱状晶粒生长发育良好。随着稀土阳离子半径的增大,材料的相对密度和力学性能呈增加趋势,其中Si_3N_4–Al_2O_3–Gd_2O_3的抗弯强度和断裂韧性分别达到860 MPa和7.2 MPa·m~(1/2)。由于稀土离子对烧结液相黏度的影响,Si_3N_4–Al_2O_3–Lu_2O_3和Si_3N_4–Al_2O_3–Y_2O_3中出现了晶粒异常长大的现象,而Si_3N_4–Al_2O_3–La_2O_3的基体与柱状晶粒界面结合较大导致材料力学性能降低。  相似文献   

8.
通过在高纯Si_3N_4粉中直接加入SiO_2粉体,来模拟高氧含量的Si_3N_4粉体,然后引入三元助剂Al_2O_3-Y_2O_3-TiO_2,促进致密化。结果表明:当SiO_2含量为4.5%(质量分数)时,SiO_2主要参与晶界玻璃相的形成,显微结构粗化,长棒状β-Si_3N_4晶粒的平均直径为(0.99±0.15)μm,硬度、强度和断裂韧性分别为(15.1±0.3)GPa、(468.6±15.6)MPa和(11.0±0.4)MPa·m~(1/2)。当SiO_2含量为9%时,除了形成晶界玻璃相,部分SiO_2还与Si_3N_4和Al_2O_3反应形成O'-Sialon相;通过晶界钉扎效应,O'-Sialon抑制了β-Si_3N_4晶粒的长大,长棒状β-Si_3N_4晶粒的平均直径为(0.56±0.13)μm,硬度、抗弯强度和断裂韧性分别为(17.1±0.7)GPa、(435.3±65.0)MPa和(11.1±1.0)MPa·m~(1/2)。因此,与含4.5%SiO_2粉体制备的Si_3N_4陶瓷相比,含9%SiO_2粉体制备的Si_3N_4陶瓷具有更细小的晶粒和更高的硬度。  相似文献   

9.
为了提高MgO-C材料的使用性能,试验以电熔镁砂(3~1和≤1 mm)、单质Si粉(≤0.074 mm)和鳞片石墨(≤0.074 mm)为主要原料,木质磺酸钙溶液为结合剂,在氮气气氛下分别于1 350℃保温2 h后再于1 500℃保温3 h制备Si_3N_4结合MgO-C材料。研究了Si粉加入质量分数分别为16%、18%、20%、22%和24%时对材料物理性能、物相组成和显微结构的影响。结果表明:当Si粉加入量(w)为16%时,试样具有最优的显气孔率、体积密度和耐压强度,此时试样中生成的物相有β-Si_3N_4、α-Si_3N_4和Si C,与其他试样相比,该试样中β-Si_3N_4的晶粒尺寸最小。另外,除Si粉加入量(w)在22%和24%时有少量MgSi N2相生成外,Si粉不同加入量的试样氮化后生成的物相无明显变化,主要有β-Si_3N_4、α-Si_3N_4和少量Si C相。试样中原位生成的β-Si_3N_4相主要呈短柱状。  相似文献   

10.
采用两种不同的简化煤焦模型,利用量子化学密度泛函理论研究了煤焦异相还原N_2O的反应机理。通过计算反应物、中间体以及过渡态的结构和能量明确了反应的过程,并通过热力学分析和动力学分析深入分析煤焦异相还原N_2O的反应机理。研究结果表明:单个碳原子无法体现N_2O分子在煤焦表面的吸附和脱附过程,不适于作为煤焦模型研究煤焦异相还原N_2O的反应,六环苯环簇碳基模型可以成功地研究煤焦异相还原N_2O的反应。煤焦异相还原N_2O的反应共经历三个过渡态和两个中间体将N_2O还原成N_2,N_2O分子在煤焦表面的吸附反应的活化能为51.01 kJ·mol~(-1),煤焦表面吸附N_2O的过程容易进行。煤焦异相还原N_2O的反应在所研究的温度范围(298.15~1500 K)内为放热反应,可以自发发生,反应平衡常数大于10~5,可以完全进行,认为是单向反应。煤焦异相还原N_2O的反应在所研究的温度范围(298.15~1500 K)内反应速率较快,反应活化能为43.55 kJ·mol~(-1),Arrhenius表达式为1.24×10~(10)exp(-5238.15/T)。  相似文献   

11.
吴志杰  吴宇辰  窦涛 《工业催化》2019,27(11):30-36
采用共沉淀法制备铁酸锌催化剂,考察改性元素Mg、B、Zr、Ce、La对铁酸锌催化剂结构和丁烯氧化脱氢性能的影响。采用XRD、TEM和N_2吸附-脱附对镧改性铁酸盐催化剂进行金属元素组成的优化研究,确认镧元素在催化剂中存在的形态和作用。结果表明,La改性铁酸锌催化剂晶粒粒径(20~50) nm,具有较大的比表面,主要活性组分是α-Fe_2O_3和ZnFe_2O_(4,)催化剂的活性随着Fe含量的升高而升高,n(Fe)∶n(Zn)∶n(La)=4∶1∶1催化剂具有最高的催化活性,反应温度380℃时,其TOF值2.1×10~(-3) mol_(butene)·mol_(surface-Fe)·s~(-1)。  相似文献   

12.
以粘胶纤维为原料、氢氧化钠为催化剂、氯乙酸钠为改性试剂,制备了阴离子改性粘胶纤维。采用高压反应釜,在140℃水热环境下用超支化聚乙烯亚胺(HPEI)为大分子改性试剂,制备了HPEI接枝改性的两性粘胶纤维。以两性粘胶纤维为模板、氯金酸为金源、硼氢化钠为还原剂,制备了纳米金(AuNPs)负载两性粘胶纤维。利用IR、SEM、XPS对产品进行表征。结果表明,两性粘胶纤维制备成功,反应主要发生在纤维表面,纤维结构未发生改变;纳米金负载两性粘胶纤维表面氮元素和金元素明显增加。以纳米金负载两性粘胶纤维为催化剂,硼氢化钠还原对硝基苯酚溶液(6×10~(-2)mol/L)的降解率可达到99.97%,硼氢化钠还原次甲基蓝溶液(8×10~(-5)mol/L)的降解率可达到96.60%,同时可以加快降解速度。  相似文献   

13.
少量H_2可以增强丙烯在Ag/Al_2O_3催化剂上选择性还原NO的活性,降低NO的起燃温度(100℃),在2个温度区间内NO转化率比较高:第1个是低温区间80~180℃,第2个是250~500℃,在这两个温度区间内NO的转化率没有太大变化,在中间温度区间内比较低,低温区间NO转化率较高是由于H_2的还原作用,当温度高于180℃时C_3H_6起主要作用。N_2和NO_2是主要的竞争产物低温时有NO_2形成,当温度在140℃左右和高于380℃的时候对N_2的选择性非常高,在200℃和260℃时NO_2的浓度77×10~(-6)~83×10~(-6)占主要产物,165~500℃时仅仅检测到N_2O_2×10~(-6),对H_2-C_3H_6-SCR的反应体系,500℃时比较高的空速条件下会生成48×10~(-6)NH_3并增加了CO/CO_2比值。氧气和催化剂表面NO_2等中间体与还原剂之间存在着竞争反应,但是仍能被还原成N_2,这些中间产物在低温时容易被H_2还原而在高于180℃时易被C_3H_6还原。通过XPS分析可以发现,部分活性组分Ag在载体Al_2O_3上即使在低温条件下也非常不稳定,由于不同价态银物种相互作用使催化剂在不同温度区间内活性不同选择性也有很大差别,在C_3H_6-SCR反应之后Ag~+和Ag_n~(δ+)物种随之出现,当在反应气中通入H_2以后金属纳米Ag单质也会生成。XRD结果也同样表明,在H_2-C_3H_6-SCR反应后有大于5 nm的Ag纳米粒子形成。  相似文献   

14.
采用共沉淀法制备不同Fe含量的Fe(x)-γ-Al_2O_3复合氧化物载体,并采用真空浸渍法制备了Pt-Sn-K/Fe(x)-γ-Al_2O_3催化剂。对制备的催化剂进行XRD、N_2物理吸附-脱附和NH_3-TPD表征,研究Fe的掺杂对Pt-Sn-K/Fe(x)-γ-Al_2O_3催化剂的结构及其催化异丁烷脱氢反应性能的影响。结果表明,Fe的引入可以改变催化剂的反应活性和产物选择性,当Fe_2O_3掺杂质量分数为4%时,催化剂具有最高的异丁烯收率,50 h的平均收率达到42.9%。  相似文献   

15.
以镁铝水滑石(MgAl-LDH)为载体,在不加入任何化学还原剂和稳定剂的条件下,利用超声波将MgAl-LDH的表面羟基激发出具有较强还原性的氢自由基,原位还原Pd2+为Pd0,制备出MgAl-LDH负载纳米钯催化剂(Pd/LDH).采用XRD、FT-IR、TEM和N2物理吸附等对所制备的Pd/LDH进行了分析与表征.在...  相似文献   

16.
以MgO–Al_2O_3–CeO_2复合体系为烧结助剂,采用放电等离子烧结工艺制备氮化硅陶瓷。研究了MgO–Al_2O_3–CeO_2含量、烧结温度对氮化硅陶瓷显微结构及力学性能的影响;探讨了复合烧结助剂作用下氮化硅陶瓷的烧结机理。结果表明:当混合粉体中Si_3N_4、MgO、Al_2O_3和CeO_2的质量比为91:3:3:3、烧结温度为1600℃时,氮化硅烧结体相对密度(99.70%)、硬度(18.84GPa)和断裂韧性(8.82MPa?m1/2)达最大值,晶粒以长柱状的β相为主,α-Si_3N_4→β-Si_3N_4相转变率达93%;当混合粉体中Si_3N_4、MgO、Al2O3和CeO_2的质量比为88:4:4:4、烧结温度为1600℃时,烧结体抗弯强度(1086MPa)达到最大值。  相似文献   

17.
采用化学原位还原法将Ni纳米颗粒均匀负载于Si粉表面,研究了Ni纳米催化剂用量对不同温度(1 200~1400℃)时Si粉的氮化行为的影响及Si_3N_4粉体的形成及机理。结果表明:含2%(质量分数,下同)Ni纳米催化剂的样品1 350℃氮化2 h后,其中残留的Si含量仅为3%;Ni纳米催化剂的引入可以有效地促进Si_3N_4晶须的生成;密度泛函理论计算表明,Ni纳米颗粒催化剂可以促进N_2分子在较低温度下解离为N原子,进而加快了Si粉的氮化。  相似文献   

18.
以具有相似粒径的国产和进口α-Si_3N_4粉体为原料、Y_2O_3为烧结助剂,1 750℃常压烧结制备多孔氮化硅陶瓷,对比粉体的影响。国产粉的球形度比进口粉要差,但是二者的成形坯体和烧结体均具有相似的致密度,并且进口粉制备的样品具有细棒状晶的微观组织和较高的强度。对2种α-Si_3N_4粉体引入Y_2O_3–Al_2O_3复合助剂体系进行的烧结研究表明:α-Si_3N_4粉体通过影响颗粒重排和溶解–沉淀过程影响不同烧结体的致密化和相转变,国产粉相变速率快而致密化慢,由此解释了多孔氮化硅陶瓷存在微观结构和强度差异的原因。  相似文献   

19.
《陶瓷》2016,(8)
利用具有棒状形貌的介孔二氧化硅作为模板及硅源,结合纳米浇注及碳热还原的方法,制备出具有与介孔二氧化硅相似形貌的Si_3N_4-Si_2N_2O复合粉体。通过调整介孔二氧化硅与碳源蔗糖的摩尔比,实现Si_3N_4相与Si_2N_2O相比例的调节。  相似文献   

20.
Si_3N_4的X射线定量相分析方法介绍   总被引:6,自引:0,他引:6  
控制Si_3N_4陶瓷中的两种变体(α-Si_3N_4及β-Si_3N_4)的相含量,对材料的宏观性能有直接的影响。企图对Si_3N_4进行通常的 X射线定量相分析所遇到的困难主要在于,α-Si_3N_4存在严重的择优取向,难于获得高纯度的单相α-Si_3N_4及β-Si_3N_4作为标准样品等。 四十多年来,X射线定量相分析方法有了很大的发展,产生了许多有价值的分析方法。这些方法涉及了对吸收因素的处理和改进、被测定物质的标准样品的选择和制取、校准曲线的设计以及衍射强度的精确测量等。在定量分析中有关对择优取向的影响进行校正  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号