首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Lanthanum molybdate, La2Mo2O9, has been attracted considerable attention owing to its high concentration of intrinsic oxygen vacancies, which could be reflected by enhanced phonon scattering and low thermal conductivity. A new series of La2Mo2O9‐based oxides of the general formula La2?xSmxMo2?xWxO9, where x ≤ 0.2, were synthesized by citric acid sol–gel process. The variation in thermal conductivity with Sm3+and W6+ fractions was analyzed based on structure information provided by X‐ray diffraction and Raman spectroscopy. The fully dense La2?xSmxMo2?xWxO9 ceramics showed a minimum thermal conductivity value [κ = 0.84 W·(m·K)?1,T = 1073 K] at the composition of La1.8Sm0.2Mo1.8W0.2O9, which stems from the multiple enhanced phonon scatterings due to mass and strain fluctuations at the La3+ and Mo6+ sites as well as the high concentration of intrinsic oxygen vacancies embedded in the crystal lattice. The thermal conductivities present an abrupt decrease at the structural transition, which is due to the phase transformation from a low‐temperature ordered form (monoclinic α‐La2Mo2O9) to a high‐temperature disordered form (cubic β‐La2Mo2O9).  相似文献   

2.
In this study, the influence of La content on the characteristics of Nb‐, Mo‐, and W‐doped LaxGe6O26±δ electrolytes was investigated through sintering study, X‐ray diffraction, scanning electron microscopy, and conductivity measurement. The densification of LaxGe5.5Nb0.5O26±δ and LaxGe5.5W0.5O26±δ was retarded as the x reached 9.75, while that of LaxGe5.5Mo0.5O26±δ improved with increasing La content. The average grain size slightly increased and weight loss due to evaporation of GeO2 significantly reduced with increasing La content, ranging from 1.39% to 0.26%. Among the systems studied, La9.33Ge5.5Nb0.5O26.245, La9.33Ge5.5Mo0.5O26.045, and La9.50Ge5.5W0.5O26.75 electrolytes revealed great potential for use in SOFC applications.  相似文献   

3.
Increasing temperature from 973 to 1173 K leads to a substantial increase of the electronic contribution to the total conductivity of undoped lanthanum molybdate and La2Mo2O9-based solid electrolytes, including La2Mo1.7W0.3O9, La2Mo1.95V0.05O9 and La1.7Bi0.3Mo2O9, where the stabilization of β-La2Mo2O9 down to room temperature was confirmed by high-resolution X-ray diffraction (XRD) and differential scanning calorimetry (DSC) data. In air, the ion transference numbers determined by the modified Faradaic efficiency (FE) technique, decrease from 0.991-0.997 at 973-1023 K down to 0.977-0.984 at 1173 K. Reducing oxygen partial pressure also increases electronic conduction evaluated by the emf and oxygen permeability (OP) measurements, which indicates that the electronic transport is n-type, resulting from decreasing oxygen content in the molybdate lattice. The level of n-type electronic conductivity in air is quite similar for all La2Mo2O9-based ceramics. The results show that these materials can be used as solid electrolytes only under oxidizing conditions and only at temperatures below 1073 K. Their practical applications may also be complicated due to relatively high thermal expansion coefficients (CTEs), (14.1-14.8)×10−6 K−1 at 300-700 K and (16.4-22.5)×10−6 K−1 at 850-1070 K, which are close to those of stabilized δ-Bi2O3 and γ-Bi2VO5.5 electrolytes.  相似文献   

4.
Dy3+–Tm3+ ions codoped SrMg2La2W2O12 (strontium magnesium lanthanum tungstate) phosphors were synthesized by conventional high‐temperature solid‐state reaction method. X‐ray analysis of the end products revealed the well‐crystallized phases with orthorhombic structure. The functional groups present in the phosphors were studied by the Fourier transform infrared measurements. To know the potential applicability of these phosphors for white light emission, the excitation and emission spectra were recorded. The excitation spectra exhibited an intense broad band at 313 nm, pertaining to the O → W ligand‐to‐metal charge‐transfer state (LMCT) of the host. With the excitation of LMCT band (313 nm), the decay curves of singly doped SrMg2La2W2O12:Dy phosphors exhibited single exponential, where as the codoped SrMg2La2W2O12:DyTm phosphors exhibited double exponential nature. The luminescence colors of these phosphors were estimated from Commission Internationale de L'Eclairage (CIE) coordinates using the photoluminescence data. The color of singly doped SrMg2La2W2O12:Dy phosphor has been tuned by codoping with Tm3+ ions. It has been noticed that the CIE chromaticity coordinates (x,y) determined from the luminescence spectrum of singly Dy3+ doped SrMg2La2W2O12 phosphor shifted toward the white light region, when codoped with Tm3+ ions. The increase in correlated color temperatures (Tcct) has been noticed with the increase of Tm3+ ions concentration in SrMg2La2W2O12:DyTm phosphors.  相似文献   

5.
Mixed protonic-electronic ceramic lanthanum tungstate membranes of La5.5W1-xMnxO11.25-δ (LWMnx, x = 0.1, 0.15 and 0.2) and La5.5W0.8-yMn0.2MoyO11.25-δ (LWMn0.2Moy, y = 0.1, 0.2, 0.3 and 0.4) were developed in present work. The H2 permeation flux through lanthanum tungstate membrane was increased by substitution of Mn ions into W sites. However, the impurity of La2O3 formed in LWMn0.15 and LWMn0.2 membranes. Introduction of a moderate amount of Mo ions in LWMn0.2 was beneficial to single phase formation and H2 permeation. LWMn0.2Mo0.2 exhibited a pure cubic phase structure without any impurities. LWMn0.2Mo0.2 membrane had a H2 permeation flux about 0.12 mL/min?cm2 at 1000 °C, which was 1.7 times higher than that through LWMn0.2 membranes.  相似文献   

6.
The ion conductivities and phase transitions of lanthanum molybdate (La2Mo2O9) substituted with lanthanide rare-earths are investigated using impedance spectroscopy, dilatometry, and X-ray powder diffraction. Among the substituted La2Mo2O9 of 10 mol% Ce, Nd, Sm, Gd, Dy, Er, Yb, the specimens containing Er, and Dy exhibit depressed α–β phase transformation and high conductivities. Their 700 °C conductivities are approximately five to seven times that of La2Mo2O9, around 0.26 S cm−1, comparable with those of (LaSr)(GaMg)O3 and Gd-substituted CeO2. Among the three compositions of 10 mol% Gd, Dy, Er showing depressed phase transition, Er- and Dy-substituted La2Mo2O9 possess relatively low thermal expansion coefficient 11×10−6 K−1, compared with that of the Gd-substituted La2Mo2O9, 18×10−6 K−1, which is near that of La2Mo2O9. Hence, Dy and Er are valuable dopants in improving the La2Mo2O9 properties. Across the lanthanide series, 10 mol%-substituted La2Mo2O9 demonstrates systematic variations in the conductivity–temperature relation. Hysteresis phenomena in both of conductivity and thermal expansion are also observed in those compositions which display phase transition.  相似文献   

7.
High density La2Mo2O9/Al2O3 nanocomposite electrolytes were successfully fabricated by microwave sintering method from the nano-scaled La2Mo2O9/Al2O3 powders. Phase formation, microstructure, grain size and electrical properties of the specimens were examined using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and AC impedance spectroscopy. It was confirmed that the composite electrolytes consist of nanocrystalline La2Mo2O9 phase with an average grain size of 70–150 nm and a small amount of crystalline α-Al2O3 phase at grain boundary. With increasing alumina content, the total conductivity at 600 °C of the composite specimens increases at first and then decreases with a maximum value of about 0.024 S/cm appearing at 2.25 mol% alumina. It was suggested that the enhancement of total conductivity of the composites may be ascribed to the improvement of both grain and grain-boundary conduction introduced by the addition of appropriate amount of alumina.  相似文献   

8.
In an effort to build the solid oxide fuel cell for intermediate temperature operations, the oxide ion conductor member of LAMOX family appears to be an ideal candidate for electrolyte since its parent crystal La2Mo2O9 shows a monoclinic-cubic phase transition around 580 °C. Nonetheless, members of the LAMOX family are much less refractory than the conventional electrode compositions which are targeted to coordinate with the electrolyte of yttrium stabilized zirconia. In this work, we study the viability of a cathode composite of Ba0.5Sr05Co0.8Fe0.2O3 (BSCF) and gadolinium doped ceria (GDC) to match the electrolyte La1.8Dy0.2Mo2O9 (LDM). Severe interfacial reactions between BSCF and LDM require a ceria-based diffusion barrier between them. The iron-doped GDC barrier of high sinterability is a convenient choice to block the unwanted reactions, allowing us to devise a BSCF/GDC composite cathode of gradient GDC content to relieve thermal stresses. The cell, operated in a mixed reactant chamber with flowing methane/air, functions properly at operation temperature 625–700 °C. Its maximum power output is recorded at 675 °C, since the BSCF crystal begins to degrade at 700 °C under the methane/air atmosphere.  相似文献   

9.
A series of compounds La2Mo2−xWxO9 (x = 0-2) were synthesized using a freeze-dried precursor method at relatively low temperatures (673-823 K). These materials were characterised by thermogravimetric and differential thermal analysis (TG/DTA), differential scanning calorimetric (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM) and dilatometric measurements. Oxygen stoichiometry was evaluated by coulometric titration and thermogravimetric analysis at 873-1273 K. The ionic and electronic conductivities of these materials were analysed by impedance spectroscopy and a Hebb-Wagner ion-blocking method under moderately reducing conditions. The presence of W6+ leads to an increase of the stability range (about 10−16 Pa for La2Mo0.5W1.5O9 at 1073 K) and prevents oxygen loss and amorphisation. Within the stability range, the electronic conductivity increases gradually as the temperature increases and as the oxygen partial pressure reduces. This indicates that the electronic transport is mainly n-type as a result of the oxygen-content decreasing in the molybdate lattice. Further reduction of the oxygen partial pressure gave rise to the decomposition of La2Mo2−xWxO9, leading to the formation of new phases with molybdenum in lower oxidation states, which further enhances the electronic conductivity. The results of the coulometric titration and the thermogravimetric studies under a dry 5% H2/Ar flow suggest that tungsten doped lanthanum molybdate materials can be used as electrolyte only at low temperature and under moderate reducing conditions.  相似文献   

10.
Ba-substituted La2Mo2O9 ((La1−xBax)2Mo2O9−δ, x = 0–0.12) was prepared and the thermal and mechanical properties were evaluated. The thermal expansion coefficients (TECs) were determined from high-temperature X-ray diffraction (XRD) analysis. Phase transition in La2Mo2O9 was suppressed via substitution of Ba for La, as demonstrated by differential scanning calorimetry (DSC) analysis. The mechanical properties, such as the bulk modulus, shear modulus, Young’s modulus, compressibility, and Debye temperature were evaluated from the measured sound velocities. The thermal conductivity was evaluated from the thermal diffusivity, heat capacity, and density in the temperature range from room temperature to 1073 K. The thermal conductivity decreased with increasing Ba content. Theoretical calculations based on the Klemens–Callaway model were performed to analyze the thermal conductivity, and the results suggest that the reduction of the thermal conductivity was mainly attributed to oxygen defects in the anion sublattice of La2Mo2O9.  相似文献   

11.
A novel design of single chamber solid oxide fuel cell (SC‐SOFC) microstack with cell‐array arrangement is fabricated and operated successfully in a methane–oxygen–nitrogen mixture. The small stack, consisting of five anode‐supported single cells connected in series, exhibits an open circuit voltage (OCV) of 4.74 V at the furnace temperature of 600 °C and a maximum power output of 420 mW (total active electrode area is 1.4 cm2) at the furnace temperature of 700 °C. A gas mixture of CH4/O2 = 1 leads to best performance and stability.  相似文献   

12.
Perovskite powders of the types La0.5Ca0.5AlyM1–yO3–δ (y = 0–0.8), M = Fe, Cr, Mn, Co and LaxSr1–xMnyCo1–y (x = 0.5–1, y = 0–1) were prepared via a sol‐gel route according to the modified Pechini method. Incineration of the resins was performed before final sintering at 1000 °C for 6 h. The phase composition of the samples was established by X‐ray powder diffraction analysis, and the lattice parameters were calculated using Rietveld analysis. The shape and size of the particles were determined via scanning electron microscopy and the specific surface area of the powder perovskites was established by the BET method. The principal particles were ca. 100 nm in size and formed agglomerates larger than 1.0 μm. The composition of the perovskites was established by EDX analysis. Following this, the catalytic behavior was tested by means of total oxidation of propane. The catalytic performance was measured at atmospheric pressure with 3 g of catalyst in a fixed‐bed quartz reactor (i.d. = 18 mm) under thermal‐assisted and microwave‐assisted conditions. Initial results show a strong dependence of the catalytic and heating behavior on the nature of the M‐atom and its number of unpaired d‐electrons as well as on the particle size and its specific surface area. No significant difference in the results could be detected from comparison of the two heating methods.  相似文献   

13.
The solubility and ferroelectric properties of (AxLa1?x)2Ti2O7 (A = Sm and Eu) solid solutions were investigated. The crystallographic structure of the solid solutions was studied using X‐ray diffraction and Raman spectroscopy. The solubility limits of Eu and Sm in (AxLa1?x) 2Ti2O7 were found to be greater than x = 0.5 and 0.8, respectively. The solid solutions had a monoclinic perovskite‐like layered structure (PLS), similar to that of the pure La2Ti2O7, when x was less than the solubility limit. When x was above the solubility limit the materials were biphase. The biphases of (SmxLa1?x)Ti2O7 (x = 0.9) consisted of (SmxLa1?x)2Ti2O7 with PLS and pure Sm2Ti2O7 with pyrochlore structure, and the biphases of (EuxLa1?x)Ti2O7 (x = 0.6, 0.7, and 0.8) consisted of (EuxLa1?x)2Ti2O7 with PLS structure and La3+ doped Eu2Ti2O7 with pyrochlore structure. The effect of A‐site substitution on the properties of La2Ti2O7 was investigated by measuring the dielectric permittivity and loss at different frequencies and temperatures. The highest piezoelectric constant d33 was 2.8 pC/N for (Sm0.1La0.9)Ti2O7.  相似文献   

14.
Lithium garnet‐type oxides Li7?2xLa3Zr2?xMoxO12 (x=0, 0.1, 0.2, 0.3) ceramics were prepared by a sol‐gel method. The influence of molybdenum on the structure, microstructure and conductivity of Li7La3Zr2O12 were investigated by X‐ray diffraction, scanning electron microscopy, and impedance spectroscopy. The cubic phase Li7La3Zr2O12 has been stabilized by partial substitution of Mo for Zr at low temperature. The introduction of Mo (x≥0.1) can accelerate densification. Li6.6La3Zr1.8Mo0.2O12 sintered at lower temperature 1100°C for 3 hours exhibits highest total ionic conductivity of 5.09 × 10?4 S/cm. Results indicate that the Mo doping LLZO synthesized by sol‐gel method effectively lowers its sintering temperature and improves the ionic conductivity.  相似文献   

15.
《Ceramics International》2023,49(8):11921-11925
In this work, spark plasma sintering of La2Mo2O9 powder was used to achieve dense ceramics of La7Mo7O30 and explore their thermoelectric properties. SPS sintering of La2Mo2O9 powder at 973 K for 10 min under 90 MPa leads to a bicoloured sample with white and black faces. XRD patterns of white and black faces are attributed to La2Mo2O9 and La7Mo7O30 phases, respectively. These experimental conditions allow observing the in-situ reduction of La2Mo2O9 during the SPS process. With a longer sintering time of 30 min, a ceramic of La7Mo7O30 is obtained. Its electrical conductivity exhibits a semiconducting behaviour and reaches a value of 1000 Sm-1 at 1000 K. The negative Seebeck coefficient show a n-type conduction in this phase. La7Mo7O30 exhibits a very low thermal conductivity, less than 1 Wm−1K−1 from room temperature up to 1000 K, similar to the values reported for La2Mo2O9. A figure of merit of 0.04 is reached at 1000 K.  相似文献   

16.
A wet atomising system has been employed as a novel method to prepare ultrafine Gd‐doped CeO2 (GDC) electrolyte slurries. By changing the fluid flow pressure and repeating the atomisation process several times for the same atomised slurries, we have obtained optimised ultrafine GDC slurry with high‐dispersed and homogeneous distribution. The sizes of the particles of GDC were in the range of tens of nanometres. A highly dense electrolyte layer (membrane) was prepared using the ultrafine GDC slurries for intermediate temperatures microtubular solid oxide fuel cell (SOFC) applications. The SOFC was fabricated by using supporting porous anode tubes of NiO and GDC, and the cathode consisted of La0.6Sr0.4Co0.2Fe0.8O3–y and GDC. A dense 10 μm GDC electrolyte layer was obtained at a lower sintering temperature of 1,250 °C for 1 h. The SOFC was tested with humidified (3% H2O) hydrogen as a fuel and the static air as an oxidant, and the tubular cell maintained its high performance even at 500 °C.  相似文献   

17.
V. B. Vert  J. M. Serra 《Fuel Cells》2010,10(4):693-702
Active perovskite‐based SOFC cathodes have been developed through lanthanide combination in the (La1 – x yPrxSmy)0.58Sr0.4Fe0.8Co0.2O3 – δ system following a ternary mixture experimental design. These compositions were prepared through a sol–gel method and characterised by electrochemical impedance spectroscopy (EIS) as symmetrical cells on GDC‐electrolyte samples in the 450–650 °C temperature range. The electrochemical properties of the single lanthanide‐based Ln0.58Sr0.4Fe0.8Co0.2O3 – δ compounds were enhanced when different lanthanides were combined together in the same crystalline structure. The observed improvement does not follow a mere additional effect of the performance from the parent Ln0.58Sr0.4Fe0.8Co0.2O3 – δ compounds, i.e. it does not follow a linear behaviour, and the better performance is ascribed to synergetic catalytic effects among lanthanide cations. A reduction in electrode polarisation resistance with respect to non‐substituted compositions is stated for most Ln0.58Sr0.4Fe0.8Co0.2O3 – δ electrode compositions combining two or three lanthanides. Samarium addition to the electrode material involves a substantial reduction in the activation energy and the reduction degree is directly dependant on the samarium amount incorporated in the lattice. The best performing composition comprises a praseodymium‐rich lanthanum‐based electrode material. The experimental data derived from the ternary mixture design were modelled using nonlinear functions and this modelling allowed finding an electrode composition minimising the polarisation resistance while maintaining the activation energy at reduced values. Selected cathode compositions were tested in fully assembled anode‐supported cells and electrochemical characterisation supports the cooperative effect of lanthanide combination.  相似文献   

18.
In this paper a detailed study of the (ZrO2)1‐x(Y2O3)x (x=0.025–0.15), (ZrO2)1‐x(Sc2O3)x (x = 0.06 – 0.11) and (ZrO2)1‐x‐y(Sc2O3)x(Y2O3)y (x=0.07 – 0.11; y=0.01 – 0.04) solid solution crystals grown by skull melting technique is presented. The structure, phase composition, and ion conductivity of the obtained crystals were investigated by X‐ray diffraction, transmission electron microscopy, Raman scattering spectroscopy, and impedance spectroscopy. Maximum conductivity as (ZrO2)1‐x(Y2O3)x and (ZrO2)1‐x(Sc2O3)x solid solution crystals is observed for the compositions containing 10 mol% stabilizing oxide, and the conductivity of 10ScSZ is ~3 times higher than for 10YSZ. Experiments on crystal growth (ZrO2)1‐xy(Sc2O3)x(Y2O3)y solid solutions showed that uniform, transparent crystals 7Sc3YSZ, 7Sc4YSZ, 8Sc2YSZ, 8Sc3YSZ, 9Sc2YSZ, 9Sc3YSZ, 10Sc1YSZ, and 10Sc2YSZ are single phase crystal containing t″ phase. It is established that a necessary condition of melt growth of (ZrO2)1‐xy(Sc2O3)x(Y2O3)y single‐phase crystals is the total concentration of the stabilizing oxides from 10 to 12 mol%. The addition of Y2O3 affects the (ZrO2)1‐xy(Sc2O3)x(Y2O3)y solid solution conductivity different ways and depends on the Sc2O3 content in the starting composition. The effects of structure, phase composition, concentration, and type of stabilizing oxides on the electrical characteristics of obtained crystals are discussed.  相似文献   

19.
Several compositions in a system of La1-x SrxCo1-y FeyO3-δ perovskites are known as very good electronic and ionic conductors, as well as excellent catalysts for hydrocarbon oxidation. In this study La0.66Sr0.34Co0.2Fe0.8O3 was selected as possibly the optimum composition. To assess the effect of preparation and calcination conditions on the activity in propane combustion, a series of different samples was prepared by a method based on slurry of reactive component precursors processed by freeze-drying. Three different materials were used as source of iron and the samples were aged at successively higher temperatures (1,153–1,343 K). The specific surface areas varied between 5.9 and 1 m2/g, depending on iron precursor and/or aging. The activity was determined in an integral U-shape reactor, typically for 1 and 2 vol% propane in air, with 1 g catalyst and 200 or 100 ml/min flowrate. Kinetics determined on the basis of a wider range of concentrations (1–4.3 vol% propane; 10 vol%-pure oxygen) for a selected, the least aged sample indicated that the propane catalytic combustion is best represented by a Mars van Krevelen model with 0.5 order in oxygen and the two kinetic constants having E app of 83 and 81 kJ/mol, respectively. For the aged samples, the pseudofirst order E app varied from 85 to 98 kJ/mol.  相似文献   

20.
Cobalt − free perovskite oxide La0.5Ba0.5Fe0.95Mo0.05O3−δ (LBFMo) was investigated as the electrode of symmetric solid oxide fuel cell (S − SOFC) based on 300−um − thick La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) electrolyte. The electrochemical performance of the S − SOFC with LBFMo|LSGM|LBFMo configuration was evaluated using ambient air as oxidant and H2 as fuel. The maximum power density (Pmax) of the S − SOFC achieves as high as 0.96 W cm−2 at 800 °C; meanwhile, the total polarization resistance (Rpt) of the S − SOFC (including the contributions of both cathode and anode) is only ∼0.12 Ω cm2. Impedance spectra analysis indicates the polarization associated with anode plays a more rate − limiting role in the whole electrochemical reaction process of the S − SOFC. In addition, using LBFMo as symmetric electrode, the S − SOFC also exhibits good cell stability. All results indicate that the LBFMo is a very potential candidate for S − SOFC electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号