首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
采用催化化学气相法在炭纤维表面原位生长纳米炭纤维后,再通过化学气相渗透法制备出纳米炭纤维改性C/C复合材料。采用微动摩擦磨损试验考察纳米炭纤维改性C/C复合材料的摩擦磨损性能,探讨原位生长纳米炭纤维对C/C复合材料摩擦磨损机理。结果表明,采用纳米炭纤维改性后C/C复合材料的摩擦过程更平稳,磨损量减小。纳米炭纤维与热解炭形成复合基体,这种复合基体在摩擦过程中形成高强度高模量的摩擦膜,从而影响复合材料的摩擦性能。  相似文献   

2.
安玉良  张辰  袁霞  隋宏超 《功能材料》2012,43(14):1858-1861
以炭纤维网布为基体,通过电镀工艺在炭纤维网布上形成Ni催化剂膜,采用化学气相沉积方法原位合成炭纤维网布/螺旋纳米碳纤维复合材料,采用扫描电镜(SEM)、Raman光谱和X射线衍射仪(XRD)对生长的螺旋纳米碳纤维的形态和结构进行表征。考察主要反应因素—温度对螺旋纳米碳纤维生长的影响,并就生长过程进行了讨论;对其制备出的炭纤维网布/螺旋纳米碳纤维复合材料在8.2~12.4GHz频段的电磁性能进行分析,考察其吸波性能。结果表明制备出的炭纤维网布/螺旋纳米碳纤维复合材料比单一的螺旋纳米碳纤维具有更高的电磁损耗角正切,电损耗正切值由0.7提高到3.8,表明复合材料具有较好的吸波性能。  相似文献   

3.
将苯胺单体引入太西无烟煤的微纳米孔隙及芳香层片中,原位聚合制备出太西无烟煤/聚苯胺复合材料,其电导率稳定在101 S·m-1数量级.分别用SEM和FTIR对其微观形态和化学结构进行了表征,用电阻仪和电化学工作站对其电化学性能进行了表征,结果发现:无烟煤/聚苯胺复合材料表面附着大量微纳米级聚苯胺小颗粒.无烟煤与聚苯胺间发生了较强的化学键合和氢键结合.当无烟煤与苯胺质量比为1/2时,得到的复合材料电导率最高,为72.5 S·m-1,单极比电容为130.72 F/g,且兼有法拉第准电容和双电层电容特征.  相似文献   

4.
纤维与基体间的界面性能是决定纤维增强树脂基复合材料力学性能的关键因素。采用单纤维断裂实验方法研究二氧化硅纳米颗粒对炭纤维/环氧树脂复合材料界面的增强作用。实验结果表明,涂覆在炭纤维表面和均匀分散在环氧树脂基体中的二氧化硅纳米颗粒含量分别为4.9g/m2和25%(质量分数)时,复合材料界面性能均得到改善,界面抗剪强度相比纯树脂体系分别提高了10.0%和15.0%。通过对纤维断点处双折射光斑和样品断面形貌等信息分析,可知纳米颗粒均匀分散并镶嵌到炭纤维表面沟槽中形成的锁扣结构是界面性能提高的重要原因。  相似文献   

5.
碳化硅纳米纤维/炭纤维共增强毡体的制备   总被引:1,自引:1,他引:0  
徐先锋  肖鹏  许林  熊翔  黄伯云 《功能材料》2008,39(4):692-694
以电镀Ni颗粒为催化剂,采用化学气相沉积(CVD)法,在炭纤维表面原位生长SiC纳米纤维(SiC-NF),制备出SiC纳米纤维/炭纤维共增强毡体.XRD和SEM分析表明生成的SiC纳米纤维物相为β-SiC,平均长度可达几十微米,直径在几十到几百个纳米之间.通过改变电镀镍的时间,研究了催化剂Ni颗粒的大小、形态及分布对SiC-NF生长情况的影响,研究结果表明,催化剂Ni颗粒分布越细小、均匀,催化活性越大,所生长的纳米SiC纤维也越细长,分布越均匀.  相似文献   

6.
为了提高硅碳复合材料中硅的使用效率,使用3-氨基三乙氧基硅烷偶联剂(3-APTS)对硅纳米颗粒进行表面修饰,制备了3-APTS-Si@C/G复合材料。采用SEM、TEM、FT-IR、TGA、Raman等对材料微观形貌、结构及组分进行表征。结果表明,3-APTS对硅纳米颗粒有良好的分散作用,没有发现明显的硅颗粒团聚现象。3-APTS-Si@C/G复合材料呈现yolk-shell结构,其作为锂离子电池负极材料表现出优异的电化学性能。在100 m A·g~(-1)的电流密度下,首次可逆容量为1 699 m Ah·g~(-1),50次循环后可逆容量为913 m Ah·g~(-1),35次循环后容量保持率为99.6%,明显高于Si@C/G复合材料(首次可逆比容量为652.9 m Ah·g~(-1),50次循环之后可逆比容量为541 m Ah·g~(-1))。当电流密度达到1 500 m A·g~(-1)时,其可逆容量可达到480 m Ah·g~(-1)。  相似文献   

7.
先对无烟煤进行低温真空热处理,除去在无烟煤的孔隙内和外表面吸附的低分子碳氢化合物,再将苯胺引入无烟煤的孔隙和外表面上,原位聚合制备出无烟煤/聚苯胺复合材料。分别用氮气吸附仪、扫描电子显微镜(SEM)、傅立叶红外光谱仪(FTIR)、电化学工作站和电阻率测定仪对其微观结构与电容性能进行了表征,结果发现:低温真空热处理增大了无烟煤的比表面、孔容和孔径,且没有破坏煤的大分子骨架,促进了煤大分子与聚苯胺链间的氢键作用,有效地改善了复合材料的电容特性。无烟煤经140℃真空热处理150min后制得的复合材料,在表面有均匀的微纳米级聚苯胺颗粒附着,比电容达到231.60F/g(3.33A/g),且循环可逆性更好。  相似文献   

8.
金属有机框架(MOFs)材料因其具有高度可控的结构以及可调的孔隙率而在电池材料领域应用广泛。但由于MOFs类材料较低的电导率以及堆叠结构带来的活性位点利用率低等问题使其难以直接用作电极材料。因此,发展MOFs材料电极仍然存在挑战。本文将表面含有Co^(2+)离子的多孔炭纤维在高温高压条件下与含对苯二甲酸根的蒸汽进行反应。通过气-固反应的方法在碳纤维表面原位生长Co-MOF,制备负载纳米级Co-MOF颗粒的碳纳米纤维复合材料,并对该复合材料的结构形貌以及锂电池性能进行分析。多孔碳纤维的引入以及较小尺寸的MOF生成使得复合材料的导电性和稳定性得到了极大的提高。当被用作锂离子电池的负极时,Co-MOF/Pcnf在0.1 A/g的电流密度下循环100次后具有1081 mAh/g的可逆容量;在1 A/g的大电流密度下循环1000次后仍具有623.4 mAh/g的可逆容量。本研究为发展MOFs材料电极提供新的发展思路。  相似文献   

9.
通过简单超声法制备了球状NiO纳米颗粒、NiO/石墨薄片(NiO/GNS)和NiO/GNS/Ag纳米复合材料。在NiO/GNS和NiO/GNS/Ag复合材料中,GNS作为NiO和Ag纳米颗粒分散的模板,不仅有效避免了NiO和Ag纳米颗粒的团聚,还改善了复合材料的电化学性能。采用场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射对样品的成分、形貌和结构进行了表征。NiO/GNS/Ag复合材料(GNS质量分数为0.5%,Ag质量分数为3%)电极表现出优异的电化学性能。在1A/g时,其初始比电容为501.66F/g,2000次循环后其比电容衰减为440.45F/g。这表明所制备的复合材料是一种有应用价值的超级电容器电极材料。  相似文献   

10.
以商业聚酰亚胺树脂为前驱体,经过静电纺丝和一步炭化制备出富含氮原子的纳米炭纤维,采用扫描电镜、低温氮吸附和XPS等手段对纳米炭纤维的结构进行表征,考察不同炭化温度下纳米炭纤维的孔结构与表面含氮官能团的演变。结果显示,所得聚酰亚胺纤维经过一步高温处理便可得到微孔发达且富含氮原子的纳米炭纤维。随着炭化温度的升高,纳米炭纤维的比表面积与氮含量均逐渐降低。700℃炭化得到的纳米炭纤维的比表面积达到447 m2/g、纤维平均直径为234 nm、表面氮含量达到4.1%。将所得纳米炭纤维直接用作超级电容器电极,采用循环伏安法、恒流充放电和交流阻抗对其电化学性能进行考察。所得富氮纳米炭纤维表现出优异的电容量和表面电化学活性,其比电容达到214 F/g,单位比表面的电容量达到0.57 F/m2。  相似文献   

11.
彭鹏  刘宇  温兆银 《无机材料学报》2013,28(11):1195-1199
采用热裂解方法, 热解分散于聚偏二氟乙烯溶液中的硅和石墨, 得到了具有稳定电化学循环性能的Si/C/石墨复合负极材料。透射电子显微镜观察发现, 复合材料形貌为无定型碳包裹硅颗粒的核壳结构。通过系统研究不同Si粒径和石墨含量对电极电化学性能的影响, 发现Si颗粒粒径越小复合材料电化学循环稳定性能越优越, 适当的降低石墨含量有利于电极材料剩余比容量的提高。当Si粒径为50 nm, Si与石墨质量比1:1时, 电极材料具有1741.6 mAh/g的首次放电比容量和72.5%的首次库仑效率, 60次循环后, 可逆比容量保持在820 mAh/g。热解有机物形成碳包覆的结构能有效地改善硅基类负极材料的电化学循环性能。  相似文献   

12.
以一氧化硅、蔗糖及天然石墨为原料, 通过高能球磨和热解工艺制备了电化学性能优异的SiO/C/G复合负极材料。采用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对复合材料的物相和形貌进行了表征。所制备的复合材料中, 纳米SiO颗粒(<50 nm=被无定形碳粘结并均匀分散在石墨鳞片上。电化学性能测试表明, 该复合材料100次循环后, 可逆容量高达1108.9 mAh/g, 容量保持率为103.8%。优异的电化学性能主要归因于纳米SiO颗粒在无定形碳基体中的均匀分布、无定形碳基体的缓冲作用和石墨相对复合材料导电性能的改善。  相似文献   

13.
王梅梅  潘晶  程亚军 《材料导报》2016,30(24):16-20, 47
以纳米硅粉为硅源,乙酸铜为铜纳米粒子前驱体,双官能团甲基丙烯酸酯单体为溶剂和碳源,利用热引发聚合方法,结合高温氩气气氛煅烧,原位可控合成硅/铜/碳纳米杂化材料,并通过后续不同气氛(空气或者空气结合氢气)、不同温度条件下热处理,进一步调控杂化材料中碳基质含量,达到改善单质硅负极材料循环性能、提高杂化材料导电性能的目的。采用粉末衍射(XRD)、能量弥散X射线谱图(EDX)、热重分析实验(TGA)、扫描电镜(SEM)、电化学阻抗测试(EIS)以及锂离子电池循环性能测试等方法对杂化材料的结构、结晶、组成、形貌、导电性能以及锂电循环性能进行了较为系统的研究。研究结果表明,单质硅以及单质铜均匀分布在碳基质中;单质铜的形成有效提高了杂化材料的导电性;后期热处理能够进一步调控碳基质含量,从而使得杂化材料初始放电比容量从1156mAh/g提高到1997mAh/g,而循环性能得到一定程度保持。  相似文献   

14.
Novel composites of silicon monoxide, pyrolytic carbon and carbon nanofiber (SiO/PyC/CNF) were hybridized with natural graphite (NG) as a means of improving the anodic performance of Li-ion batteries. Samples were made with hybridization levels of 10-30?wt% of NG exhibited excellent cyclability with a discharge capacity of 389-522?mAh?g(-1) in a Li-ion battery system. SiO/PyC/CNF composite hybrids showed better cyclability than other carbon composites containing SiO/PyC and SiO/CNF. These hybridization effects were attributed to the lower contact resistance of SiO/PyC/CNF in the electrode. The internal spaces created throughout the SiO/PyC/CNF composite and their effect on material dispersion in the hybridized electrodes may have prevented electrode damage by relieving tensions induced by the expansion of SiO particles in the electrode over the course of repeated charge and discharge processes.  相似文献   

15.
利用催化气相化学沉积(Catalytic chemical vapor deposition,CCVD)法在炭纸上原位生长得到CNF/CP复合体,并对这种复合体的物理化学性能和氧气电催化还原反应(Oxygen reduction reaction,ORR)性能进行了研究.结果表明:纳米炭纤维较为均匀地分散在炭纸上,其中纳米炭纤维具有窄的直径分布.所制CNF/CP复合体具有较大的比表面积和独特的中孔结构;相对于炭纸,CNF/CP复合体的端面碳原子和基面碳原子比例较高.另外,CNF/CP还具有较高的ORR反应活性,其ORR为2电子反应过程,原因可以归结于纳米炭纤维独特的微结构.同时,CNF/CP也具有较高的交换电流密度和较正的平衡电压.  相似文献   

16.
Wang CM  Li X  Wang Z  Xu W  Liu J  Gao F  Kovarik L  Zhang JG  Howe J  Burton DJ  Liu Z  Xiao X  Thevuthasan S  Baer DR 《Nano letters》2012,12(3):1624-1632
It is well-known that upon lithiation, both crystalline and amorphous Si transform to an armorphous Li(x)Si phase, which subsequently crystallizes to a (Li, Si) crystalline compound, either Li(15)Si(4) or Li(22)Si(5). Presently, the detailed atomistic mechanism of this phase transformation and the degradation process in nanostructured Si are not fully understood. Here, we report the phase transformation characteristic and microstructural evolution of a specially designed amorphous silicon (a-Si) coated carbon nanofiber (CNF) composite during the charge/discharge process using in situ transmission electron microscopy and density function theory molecular dynamic calculation. We found the crystallization of Li(15)Si(4) from amorphous Li(x)Si is a spontaneous, congruent phase transition process without phase separation or large-scale atomic motion, which is drastically different from what is expected from a classic nucleation and growth process. The a-Si layer is strongly bonded to the CNF and no spallation or cracking is observed during the early stages of cyclic charge/discharge. Reversible volume expansion/contraction upon charge/discharge is fully accommodated along the radial direction. However, with progressive cycling, damage in the form of surface roughness was gradually accumulated on the coating layer, which is believed to be the mechanism for the eventual capacity fade of the composite anode during long-term charge/discharge cycling.  相似文献   

17.
以聚乙烯吡咯烷酮(PVP)作为高分子聚合物配体, 采用静电纺丝法制备了Si/C复合负极材料。利用PVP高温烧结形成的碳作为体积缓冲骨架, 有效地解决了硅在循环过程中的体积膨胀和粉化问题。采用X射线衍射(XRD)、拉曼光谱(Raman)和扫描电子显微镜(SEM)对复合材料的晶体结构及微观形貌进行了研究。结果表明, 材料整体呈纤维状分布, 纤维直径300 ~ 400 nm, Si粒子以“麦穗状”均匀地分布在由无定形碳构成的纤维上。电化学测试结果表明, 复合材料首次充放电的不可逆容量为294.9 mAh/g, 是由于电极与电解液界面间固态电解质(SEI)膜的形成所致。另外, 复合材料在低倍率(0.1C、0.2C和0.5C)和高倍率(1.0C和2.0C)下均具有较高的库伦效率及较好的循环稳定性。  相似文献   

18.
Hierarchical carbon nanostructures based on ultra-long carbon nanofibers (CNF) decorated with carbon nanotubes (CNT) have been prepared using plasma processes. The nickel/carbon composite nanofibers, used as a support for the growth of CNT, were deposited on nanopatterned silicon substrate by a hybrid plasma process, combining magnetron sputtering and plasma-enhanced chemical vapor deposition (PECVD). Transmission electron microscopy revealed the presence of spherical nanoparticles randomly dispersed within the carbon nanofibers. The nickel nanoparticles have been used as a catalyst to initiate the growth of CNT by PECVD at 600°C. After the growth of CNT onto the ultra-long CNF, SEM imaging revealed the formation of hierarchical carbon nanostructures which consist of CNF sheathed with CNTs. Furthermore, we demonstrate that reducing the growth temperature of CNT to less than 500°C leads to the formation of carbon nanowalls on the CNF instead of CNT. This simple fabrication method allows an easy preparation of hierarchical carbon nanostructures over a large surface area, as well as a simple manipulation of such material in order to integrate it into nanodevices.  相似文献   

19.
This study describes the development of a novel bimetal (Fe and Cu)-grown hierarchical web of carbon micro-nanofiber-based electrode for biosensor applications, in particular to detect glucose in liquids. Carbon nanofibers (CNFs) are grown on activated carbon microfibers (ACFs) by chemical vapor deposition (CVD) using Cu and Fe as the metal catalysts. The transition metal-fiber composite is used as the working electrode of a biosensor applied to detect glucose in liquids. In such a bi-nanometal-grown multi-scale web of ACF/CNF, Cu nanoparticles adhere to the ACF-surface, whereas Fe nanoparticles used to catalyze the growth of nanofibers attach to the CNF tips. By ultrasonication, Fe nanoparticles are dislodged from the tips of the CNFs. Glucose oxidase (GOx) is subsequently immobilized on the tips by adsorption. The dispersion of Cu nanoparticles at the substrate surface results in increased conductivity, facilitating electron transfer from the glucose solution to the ACF surface during the enzymatic reaction with glucose. The prepared Cu-ACF/CNF/GOx electrode is characterized for various surface and physicochemical properties by different analytical techniques, including scanning electron microscopy (SEM), electron dispersive X-ray analysis (EDX), Fourier-transform infrared spectroscopy (FTIR), BET surface area analysis, and transmission electron microscopy (TEM). The electrochemical tests show that the prepared electrode has fast response current, electrochemical stability, and high electron transfer rate, corroborated by CV and calibration curves. The prepared transition metal-based carbon electrode in this study is cost-effective, simple to develop, and has a stable immobilization matrix for enzymes.  相似文献   

20.
LiFePO4/carbon-network composite was synthesized by a high temperature solid-state method using the natural sawdust as carbon precursor. The microstructure of the as-synthesized sample was characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), respectively. The results revealed that the LiFePO4 particles with diameters ranging from 30 to 150 nm were well connected by carbon networks. The electrochemical performance of the composite was characterized using galvanostatic charge-discharge technique. The initial discharge capacity of LiFePO4/carbon-network cathode reached 126 mAh x g(-1) with 0.2 C rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号