首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The aim of this work is to study the microstructure and mechanical properties of an as-cast AZ91D+Y magnesium alloy processed via two different severe plastic deformation techniques, equal channel angular extrusion (ECAE) and multi-axial forging (MAF). The grains were significantly refined after only one pass for both ECAE and MAF processed billets. However, the homogeneity of the SPD-processed microstructure increased with increasing number of passes. Micro-hardness and tensile tests showed that billets processed by ECAE and MAF techniques followed a same behaviour. With the increase of the number of processing passes (accumulated strain), the values of micro-hardness, yield strength, ultimate tensile strength and elongation were observed to increase. Grain refinement caused by dynamic recrystallization was introduced to explain the effects of the number of processing passes (accumulated strain) on the microstructure and mechanical properties of AZ91D+Y magnesium alloys processed by ECAE and MAF techniques.  相似文献   

2.
The hot compression deformation behavior of Cu–6.0Ni–1.0Si–0.5Al–0.15?Mg–0.1Cr alloy with high strength, high stress relaxation resistance and good electrical conductivity was investigated using a Gleeble1500 thermal–mechanical simulator at temperatures ranging from 700 to 900?°C and strain rates ranging from 0.001?to 1?s?1. Working hardening, dynamic recovery and dynamic recrystallization play important roles to affect the plastic deformation behavior of the alloy. According to the stress–strain data, constitutive equation has been carried out and the hot compression deformation activation energy is 854.73?kJ/mol. Hot processing map was established on the basis of dynamic material model theories, and Prasad instability criterion indicates that the appropriate hot processing temperature range and strain rate range for hot deformation were 850~875?°C and 0.001~0.01?s?1, which agreed well with the hot rolling experimentation results.  相似文献   

3.
Mg–Gd–Y–Zr alloys are among recently developed Mg alloys having superior mechanical properties at elevated temperatures. Dynamic recrystallization (DRX) and rare earth-rich particles play important roles in enhancing the high-temperature strength of these alloys. Accordingly, the microstructural evolution of a fine-grained extruded Mg–5Gd–4Y–0.4Zr alloy was investigated after hot shear deformation in the temperature range of 350–450 °C using the shear punch testing (SPT) method. The results reveal the occurrence of partial dynamic recrystallization at the grain boundaries at 350 °C while the fraction of DRX grains increases with increasing deformation temperature. A fully recrystallized microstructure was achieved after SPT at 450 °C. The Gd-rich and Y-rich cuboid particles, having typical sizes in the range of ~50 nm to ~3 μm, show excellent stability and compatibility after hot shear deformation, and these particles enhance the high-temperature strength during hot deformation at elevated temperatures. The textural evolution, examined using electron backscattered diffraction, revealed a non-fibrous basal DRX texture after SPT which is different from the conventional deformation texture.  相似文献   

4.
In the present work,a double-pass continuous expansion extrusion forming (CEEF) process was proposed for an Al-Mg-Si alloy,in which the diameter of rods was gradually expanded.The microstruc-tural evolution,mechanical properties and deformation characteristics were investigated by utilizing microstructural observations,mechanical testing and a finite element method coupled with a cellular automata model.The results showed that the strength and ductility of the double-pass CEEF processed Al-Mg-Si alloys were improved synchronously,especially in artificially aged alloys.The grain size of the processed Al-Mg-Si alloy rods was refined remarkably by continuous dynamic recrystallization (CDRX)and geometric dynamic recrystallization (GDRX),and the homogeneity of microstructure was gradu-ally improved with increasing number of processing passes.The artificially aged alloy processed with double-pass CEEF and water quenching contained fine (sub)grains and high-density dislocations,which resulted in more needle-shaped β" precipitates and a larger precipitate aspect ratio than the as-received and air-cooled CEEF alloys owing to the different precipitation kinetics.The severe cumulate strain and microshear bands were found to accelerate CDRX and GDRX for grain refinement between adjacent posi-tions of the parabolic metal flow due to the special temperature characteristics and large shear straining during the CEEF process.  相似文献   

5.
Commercial purity titanium was processed by equal-channel angular pressing (ECAP) for 8 passes and then subjected to dynamic compressive testing using a split-Hopkinson pressure bar (SHPB) facility with an imposed strain rate of ~4000 s?1 and testing temperatures from 288 to 673 K. The results show that ECAP produces an average grain size of ~0.3 μm in transverse sections, but grains which are elongated in longitudinal sections. During dynamic compressive testing at temperatures ranging from 288 to 473 K, the grain shapes and sizes remain unchanged in the transverse sections, but the elongated shapes in the longitudinal sections evolve into polygons due to cell dislocation evolution. At 673 K, the grains become equiaxed with an average size of ~1.8 μm thereby demonstrating the occurrence of dynamic recrystallization. It is shown that the flow stresses decrease with increasing temperature from 288 to 673 K, and there is also a reduction in the rate of strain hardening.  相似文献   

6.
Mg-Gd-Y-Zr alloy is usually manufactured through method of combined homogenization, hot deformation and aging treatment and the obtained alloy usually exhibits low ductility. In this investigation, Mg-Gd-Y-Zr alloy possessing superior overall mechanical properties, both high ductility and strength, was obtained through a method of hot extrusion applied on the as cast alloy and a following T6 treatment involving a short solution and an aging. The coarse grains in the as cast alloy was severely refined during the extrusion processing, accompanied with the decomposition and dissolving of the eutectic structure generated during casting. After T6-treated, the alloy exhibits superior comprehensive mechanical properties of 293?MPa in yield strength and 9.4% in elongation. Compared with the alloy processed by extrusion and T5 treatment, which is usually used for wrought magnesium alloy, this alloy exhibits an increment of more than 90% in ductility with a sacrifice as low as 2% in yield strength. Meanwhile, the fabrication process is notably shortened. The improvement in mechanical property is attributed to the random texture, generated in the extrusion without a foregoing homogenization. This manufacturing method of combining extrusion and T6 treatment throws light on the application of extruded magnesium alloy through the significant improvement in ductility, notable shortening in fabrication process procedure and the sever reduction in energy consumption.  相似文献   

7.
The experimental researches on Equal Channel Angular Extrusion (ECAE) process of commercial available Al-6061 alloy were conducted and the grain refinement after ECAE processing was investigated. Sixteen passes of ECAE processing at room temperature were conducted and the relationship of grain refinement with extrusion pass was established. The property enhancements after ECAE processing including ultimate tensile strength and Vickers microhardness were investigated to determine the effects of the number of ECAE passes on the mechanical properties of the extruded samples. The research presents a whole picture of ECAE processing of the alloy for up to 16 passes.  相似文献   

8.
Nano grained AZ31 alloy achieved by equal channel angular rolling process   总被引:1,自引:0,他引:1  
Equal channel angular rolling (ECAR) is a severe plastic deformation process which is carried out on large, thin sheets. The grain size could be significantly decreased by this process. The main purpose of this study is to investigate the possibility of grain refinement of AZ31 magnesium alloy sheet by this process to nanometer. The effect of the number of ECAR passes on texture evolution of AZ31 magnesium alloy was investigated. ECAR temperature was controlled to maximize the grain refinement efficiency along with preventing cracking. The initial microstructure of as-received AZ31 sheet showed an average grain size of about 21 μm. The amount of grain refinement increased with increasing the pass number. After 10 passes of the process, significant grain refinement occurred and the field emission scanning electron microscopic (FESEM) micrographs showed that the size of grains were decreased significantly to about 14-70 nm. These grains were formed at the grain boundaries and inside some of the previous larger micrometer grains. Observation of optical microstructures and X-ray diffraction patterns (XRD) showed the formation of twins after ECAR process. Micro-hardness of material was studied at room temperature. There was a continuous enhancement of hardness by increasing the pass number of ECAR process. At the 8th pass, hardness values increased by 53%. At final passes hardness reduced slightly, which was attributed to saturation of strain in high number of passes.  相似文献   

9.
By using electron backscatter diffraction(EBSD) and transmission electron microscopy(TEM), the effect of Si content on microstructure characteristics of three as-extruded Ale SieM g alloys was investigated. Results showed that the density of coarse Si particles played a critical role in dynamic recrystallization. Dynamic recrystallization rarely occurred in S1 alloy with less Si content; however, it happened in the Si-rich zones in S2 alloy with a medium Si content. And a mature recrystallization was observed in S3 alloy with high Si content. Although deformation was carried out at high temperature, particle-stimulated dynamic recrystallization occurred in Si-rich zones.  相似文献   

10.
The current research investigates the effect of homogenization on the microstructure and mechanical properties of the AZ91 D alloy processed by repetitive upsetting(RU). Results show that during RU processing, the initial large Mg_(17)Al_(12) particles in the as-cast specimen accelerate the dynamic recrystallization(DRX) due to the particle stimulating nucleation(PSN) mechanism. With the progress of RU,the inherent large strain breaks the large second phases into small fragments, which indicates the PSN gradually disappears, while the pinning effect becomes obvious. As for the homogenized specimen, a pre-heat treatment leads to the absence of Mg_(17)Al_(12) particles but a uniform distribution of Al atoms in the Mg alloy. Though the subsequent RU promotes the precipitation of Mg_(17)Al_(12) particles, the relatively small particle size and the uniform distribution are more favorable to act as obstacles for grain growth than contributors to PSN. Finally, a more homogeneous and refined microstructure is obtained in the specimen with prior homogenization than the as-cast one.  相似文献   

11.
热处理对AZ31B镁合金轧板组织和性能的影响   总被引:1,自引:0,他引:1  
研究了AZ31B镁合金轧板经不同温度、时间退火后的组织和性能及其再结晶行为。结果表明,热轧板材在退火过程中主要发生再结晶;退火后,强度略有下降,但伸长率明显提高;在523K下退火,保温60min,可获得平均晶粒直径为10μm的细晶组织,其抗拉强度为258MPa,断裂伸长率为22.3%,综合性能较好。热轧态板材呈脆性准解理断裂,退火后转变为韧性断裂。  相似文献   

12.
The Mg-6Zn-2Al alloy was processed by ECAP and microstructure and mechanical properties of the alloy before and after ECAP were studied. The results revealed that the microstructure of the ZA62 alloy was successfully refined after two-step ECAP (2 passes at 473 K and 2-8 passes at 423 K). The course bulk interphase of Mg51Zn20 was crushed into fine particles and mixed with fine matrix grains forming “stripes” in the microstructure after the second step of ECAP extrusion. A bimodal microstructure of small grains of the matrix with size of ∼0.5 μm in the stripes and large grains of the matrix with size of ∼2 μm out of stripes was observed in the microstructure of samples after 4-8 passes of ECAP extrusion at the second step. The mechanical properties of the alloy studied were significantly improved after ECAP and the highest yield strength and elongation at room temperature were obtained at the samples after 4 and 8 ECAP passes at the second step, respectively. Tensile tests carried out at temperature of 473 K to 573 K and strain rate of 1 × 10−3 s−1 to 3 × 10−2 s−1 revealed that the alloy after 8 ECAP passes at the second step showed superplasticity and the highest elongation and strain rate sensitivity (m-value) reached 520% and 0.45, respectively.  相似文献   

13.
Effects of the particles induced by strain on dynamic recrystallization and microstructure of the AA7050 aluminum alloy were investigated during hot deformation using X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron back-scattered diffraction (EBSD). Experimental results showed that partial recrystallized grains containing little sub-structure were produced during the solution treatment. Numerous particles were successfully obtained by the strain-induced precipitation during first-pass deformation at 573 K. The deformation promoted spheroidization and refinement of the precipitate particles. Then these particles pinned dislocations and grain boundaries inhibiting dynamic recrystallization during second-pass high-temperature deformation at 673 K and low angle grain boundary fraction was increased significantly to 83.8%. Furthermore, the tensile test indicated that microstructure with numerous low angle boundaries (LAGBs) and 5 μm sub-grains had increased the strength and ductility of the AA7050 aluminum alloy.  相似文献   

14.
The effect of delay time with constant first finishing pass temperature (800℃) has been investigated by means of multi-pass torsion tests on Ti-Nb-IF steel. All the tests have been carried out at a strain rate of 2 s-1 with 11 passes and 0.3 strain each pass. During the final pass, dynamic recrystallization occurs to a degree that depends on the delay time. In short interpass time (1 s) and at these temperatures (T≤800℃) there is not enough time to start static recrystallization, therefore, accumulation of strain occurs and after some passes, strain reaches a critical strain for starting dynamic recrystallization. In this study, the changes of mean flow stress during each pass and also the microstructural observation confirms that dynamic recrystallization occurs after some passes in ferrite phase of this steel. The stress-strain curves with constant temperature obtained by using a kinetic model and compensation of the increasing mean flow stress with decreasing temperature. Thus, this result also co  相似文献   

15.
An Mg–12Gd–3Y (wt%) alloy was prepared by conventional casting method using permanent steel mold. Then this alloy was subjected to hot processing, involving hot extrusion and free forging. Tensile strength at room temperature can be improved, with the highest ultimate tensile strength (UTS) value of 390.2 MPa achieved by hot extrusion in comparison to that of as-cast alloy. Temperature dependence of tensile strength is distinguishable for the as-extruded alloy, while the relative stability in UTS values of the alloy after being freely forged should be ascribed to the inter-crossing among deformation bands located at various orientations and the accommodation effect of twining lamellas resulting from forging process on plastic deformation during tensile test at elevated temperatures. Further annealing after hot processing can only have adequate influence on the tensile strength of as-forged alloy. For the alloy freely forged and annealed at 523 K for 4 h, the highest UTS (441.1 MPa) at room temperature is found, which should be mainly related to an evolution from the original as-forged microstructure with subgrains to a more stable combination of large and refined grains through dynamic recrystallization during free forging, and the stress at offset yield YS (384.3 MPa) is also comparable to that relatively high value of 396.9 MPa after solution treatment and isothermal aging of the as-cast alloy.  相似文献   

16.
In friction surfacing (FS), material is deposited onto a substrate in the plasticized state, using frictional heat and shear stresses. The coating material remains in the solid state and undergoes severe plastic deformation (SPD) at high process temperatures (≈0.8 Tmelt), followed by high cooling rates in the range of 30?K/s. Dynamic recrystallization and the thermal cycle determine the resulting microstructure. In this study, Ni-based alloy 625 was deposited onto 42CrMo4 substrate, suitable, for instance, for repair welding of corrosion protection layers. Alloy 625 is known to undergo discontinuous dynamic recrystallization under SPD, and the resulting grain size depends on the strain rate. The coating microstructure was studied by microscopy and electron backscatter diffraction (EBSD). The coatings exhibit a fully recrystallized microstructure with equiaxed grains (0.5–12?µm) and a low degree of grain average misorientation. Flow lines caused by a localized decrease in grain size and linear alignment of grain boundaries are visible. Grain nucleation and growth were found to be strongly affected by localized shear and nonuniform material flow, resulting in varying amounts of residual strain, twins and low-angle grain boundaries in different regions within a single coating layer’s cross section.

FS can be used to study dynamic recrystallization at high temperatures, strains and strain rates, while at the same time materials with a recrystallization grain size sensitive to the strain rate can be used to study the material flow during the process.  相似文献   

17.
将Mg-1Al-0.4Ca-0.5Mn-0.2Zn(质量分数,%)合金在不同温度挤压,研究其微观组织和力学性能。结果表明:在260℃和290℃挤压的合金均发生不完全动态再结晶,再结晶晶粒尺寸分别为0.75 μm和1.2 μm。二者均具有高密度的G.P.区和球状纳米析出相,能抑制位错运动并为动态再结晶提供丰富的形核位点。沿晶界析出的纳米相能抑制晶界的运动和限制再结晶晶粒的生长,从而生成尺寸为0.75 μm的超细晶粒。随着挤压温度从260℃提高到290℃,合金的屈服强度从322 MPa提高到343 MPa,伸长率分别为13.4%和13%,没有明显的变化。挤压温度的提高促进了动态析出和动态回复,使合金中积累了高密度纳米盘状相和球状相,大量位错通过动态回复转变成小角度晶界,将未再结晶区域细分成密集的层状亚晶粒,二者均能抑制新位错的运动。这些因素,是在290℃挤压后的合金仍具有较高屈服强度和塑性没有明显变化的主要原因。纳米相对位错的钉扎在一定程度上限制了动态回复的发生,使合金中仍存在较高数量的残余位错,也有利于提高其屈服强度。  相似文献   

18.
The microstructure and mechanical properties of equal channel angular pressed (ECAP) Mg–Y–RE–Zr alloy (WE43) are examined. Results show that after ECAP, the average grain size remarkably decreases from ~50?µm at initial state to ~1.5?µm through ECAP for four passes and the homogeneity of microstructure also improves gradually. Meanwhile the secondary-phase β-Mg5RE morphology has obvious transformation from plate-like to spherical. Moreover, the initial random texture is converted to the strong (0002) basal texture. The ultimate tensile strength and yield strength increase in all passes. However, the ductility exhibits a tendency of increase from 1 to 4 passes then decrease from 4 to 12 passes. The variation in strength and ductility is attributed to the effect of specific microstructure evolution.  相似文献   

19.
1.IntroductionVerysmallrecrystallizedgrainswereobservedintheadiabaticshearbandsinmetalswhentheywereheavilydeformedathighstrainrates,whichwerezonesofhighlylocalizedplasticdeformation[1~5].Pak[1]foundthatshearbandsinacommerciallypuretitaniumwereconsistedofsmallgrainsof5o~3Oonmindiameterwithwell-definedboundaries.Chokshi[2],And.ade[3jandHinesI4Jalsoobservedtherecrystal-lizedgrainswith1oO~2Oonmdiameterswithintheshearbandsofcopper.Cho151showedthattherewereequiaxedcellswiththesizesof2oo~5oonminth…  相似文献   

20.
Twin-roll cast (TRC) Al-Mg-Sc alloy was friction stir processed (FSP) to obtain ultrafine grained (UFG) microstructure. Average grain size of TRC alloy in as-received (AR) condition was 19.0 ± 27.2 μm. The grain size reduced to 0.73 ± 0.44 μm after FSP. About 80% of the grains were smaller than 1 μm in FSP condition. FSP resulted into 80% of the grain boundaries to have high angle grain boundary (HAGBs) character. Uniaxial tensile testing of UFG alloy showed an increase in yield strength (YS) and ultimate tensile strength (UTS) (by ∼100 MPa each) of the alloy with a very marginal decrease in total and uniform elongation (total - 27% in AR and 24% in UFG and uniform - 19% in AR and 14% in UFG). A theoretical model predicted that the grain refinement cannot take place via discontinuous dynamic recrystallization. Zener pinning model correctly predicted the grain size distribution for UFG alloy. From work hardening behaviors in both the conditions, it was concluded that grain boundary spacing is more important than the character of grain boundaries for influencing extent of uniform deformation of an alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号