首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Capacitive inclination sensors have the advantage because it could easily provide a linear analog output with respect to inclination. Since the dimensions of the sensing region are very small, then this sensor is expected to be widely used in fields where efficient and reliable position control is a primary factor to be considered if this sensor could be mass produced at low cost. Therefore, we proposed fabrication process based on transfer to resin using mold. We successfully fabricated a micro capacitive inclination sensor by a combination of a resin forming method and a mold. The sensor consists of a gap distance of 80 μm between its electrodes. The sensor detects difference of capacitance, which varied with movement of silicone oil accompanying with inclination. When the sensor was inclined, linear analog output was obtained within the range of ?45 to +45°  相似文献   

2.
Measurement of liquid film thickness is essential for understanding the dynamics of two-phase flow in microchannels. In this work, a miniaturized sensor matrix with impedance measurement and MEMS technology to measure the thin liquid film underneath a bubble in the air–water flow in a horizontal microchannel has been developed. This miniaturized sensor matrix consists of 5 × 5 sensors where each sensor is comprised of a transmitter and a receiver electrode concentrically. The dimension and performance of the sensor electrodes were optimized with simulation results. The maximum diameter of the sensor ring is 310 µm, allowing a measurable range of liquid film thickness up to 83 µm. These sensors were distributed on the surface of a wafer with photolithography technology, covering a total length of 8 mm and a width of 2 mm. A spatial resolution of 0.5 × 2.0 mm2 and a temporal resolution of 5 kHz were achieved for this sensor matrix with a measurement accuracy of 0.5 µm. A series of microchannels with different heights were used in the calibration in order to achieve the signal-to-thickness characteristics of each sensor. This delicate sensor matrix can provide detailed information on the variation of film thickness underneath gas–water slug directly, accurately and dynamically.  相似文献   

3.
This paper reports a low power miniaturized MEMS based integrated gas sensor with 36.84 % sensitivity (ΔR/R0) for as low as 4 ppm (NH3) gas concentration. Micro-heater based gas sensor device presented here consumes very low power (360 °C at 98 mW/mm2) with platinum (Pt) micro-heater. Low powered micro-heater is an essential component of the metal oxide based gas sensors which are portable and battery operated. These micro-heaters usually cover less than 5 % of the gas sensor chip area but they need to be thermally isolated from substrate, to reduce thermal losses. This paper elaborates on design aspects of micro fabricated low power gas sensor which includes ‘membrane design’ below the microheater; the ‘cavity-to-active area ratio’; effect of silicon thickness below the silicon dioxide membrane; etc. using FEM simulations and experimentation. The key issues pertaining to process modules like fragile wafer handling after bulk micro-machining; lift-off of platinum and sensing films for the realization of heater, inter-digitated-electrodes (IDE) and sensing film are dealt with in detail. Low power platinum microheater achieving 700 °C at 267 mW/mm2 are fabricated. Temperature calculations are based on experimentally calculated thermal coefficient of resistance (TCR) and IR imaging. Temperature uniformity and localized heating is verified with infrared imaging. Reliability tests of the heater device show their ruggedness and repeatability. Stable heater temperature with standard deviation (σ) of 0.015 obtained during continuous powering for an hour. Cyclic ON–OFF test on the device indicate the ruggedness of the micro-heater. High sensitivity of the device for was observed for ammonia (NH3), resulting in 40 % response for ~4 ppm gas concentration at 230 °C operating temperature.  相似文献   

4.
Humidity sensors were fabricated using ZnO thin films synthesized on a Si wafer substrate. The ZnO thin films were grown via a vapor solid (VS) approach at temperatures ranging from 400 to 700 °C. Experiments were executed to observe the relationships between the relative humidity (RH) and resistance of these devices fabricated under various VS temperatures. Experimental results show that the ZnO thin films grown at a temperature of 700 °C using the VS approach exhibits an optimum sensitivity to humidity. The measured sensor resistance ranges from 495 × 106 to 46 × 103 Ω for RH ranging from 11 to 95 % at room temperature. The variance of sensor resistance exceeds 104 times, indicating that the proposed method can produce a highly sensitive humidity sensor.  相似文献   

5.
This paper presents a novel high sensitive MEMS capacitive pressure sensor that can be used as a part of LC tank implant circuit for biomedical applications. The pressure sensor has been designed to measure pressures in the range of 0–60 mmHg that is in the range of intraocular pressure sensors. Intraocular pressure sensors are important in detection and treatment of an incurable disease called glaucoma. In this paper two methods are presented to improve the sensitivity of the capacitive pressure sensor. First low stress doped polysilicon material is used as a biocompatible material instead of p++silicon in previous work (Gu in Microfabrication of an intraocular pressure sensor, M.Sc Thesis, Michigan State University, Department of Electrical and Computer Engineering, 2005) and then some slots are added to the poly Si diaphragm. The novelty of this research relies on adding some slots on the sensor diaphragm to reduce the effect of residual stress and stiffness of diaphragm. The slotted diaphragm makes capacitive pressure sensor more sensitive that is more suitable for measuring intraocular pressure. The results yield a sensor sensitivity of 1.811 × 10?5 for p++silicon clamped, 2.464 × 10?5 1/Pa for polysilicon clamped and 1.13 × 10?4 1/Pa for polysilicon slotted diaphragm. It can be seen that the sensitivity of the sensor with slotted poly Si diaphragm increased 6.2 times compared with previous work (clamped p++silicon diaphragm).  相似文献   

6.
Piezoresistive sensing is one of the most frequently used transduction mechanism in pressure sensors. The piezoresistor placement on the diaphragm and the piezoresistor configuration play a pivotal role in determining the output characteristics of a pressure sensor. In this work, two different pressure sensors with different transverse piezoresistor configurations are studied to determine the effect of piezoresistor configuration on the sensitivity and non-linearity of the pressure sensors. A sensor structure with a square diaphragm size of 1,480 µm edge length and diaphragm thickness of 50 µm is chosen for the study. The design considerations for piezoresistor placement and the piezoresistor shapes are discussed in detail. The sensors are fabricated with bulk micromachined diaphragm and polysilicon piezoresistors. The sensor characteristics are determined for three temperatures, namely, ?5, 25 and 55 °C and for a pressure range of 0–30 Bar. The characterization results indicate that the design with two piezoresistor arms in transverse piezoresistor configuration (2 × 2 Design) has higher sensitivity than the single arm configuration (2 × 1 Design) by about 25 % at 25 °C but it also has a higher non-linearity. The study shows the importance of selecting the proper piezoresistor configuration in the design of pressure sensors.  相似文献   

7.
We present an advanced RMS voltage sensor based on a variable parallel-plate capacitor using the principle of electrostatic force. The device is fabricated in a micromechanical surface process with a high-aspect ratio actuator, reinforced by copper electroplating employing a sacrificial photo-resist layer. Another copper layer with a coplanar waveguide below the actuator provides separated excitation and sensing electrodes. Flip-chip technology is employed for low-loss electrical connectivity. The presented design has a plate area of up to 3 × 3 mm2 and an initial gap distance of only 1.5 μm. We present results achieving a pull-in voltage below 1 V at frequencies from DC up to 1 GHz and sensitivities up to 1 fF/mV.  相似文献   

8.
Kapton-based flexible pressure sensor arrays are fabricated using a new technology of film transfer. The sensors are dedicated to the non-invasive measurement of pressure/force in robotic, sport and medical applications. The sensors are of a capacitive type, and composed of two millimetric copper electrodes, separated by a polydimethylsiloxane (PDMS) deformable dielectric layer. On the flexible arrays, a very small curvature radius is possible without any damage to the sensors. The realized sensors are characterized in terms of fabrication quality. The inhomogeneity of the load free capacitances obtained in the same array is ±7 %. The fabrication process, which requires 14 fabrication steps, is accurate and reproducible: a 100 % transfer yield was obtained for the fabrication of 5 wafers gathering 4 sensor arrays each (215 elementary sensors). In the preliminary electro-mechanical characterization, a sensor (with a PDMS dielectric layer of 660 μm thickness and a free load capacitance of 480 fF) undergoes a capacitance change of 17 % under a 300 kPa normal stress.  相似文献   

9.
This work presents a polydimethylsiloxane (PDMS) microfluidic device for packaging CMOS MEMS impedance sensors. The wrinkle electrodes are fabricated on PDMS substrates to ensure a connection between the pads of the sensor and the impedance instrument. The PDMS device can tolerate an injection speed of 27.12 ml/h supplied by a pump. The corresponding pressure is 643.35 Pa. The bonding strength of the device is 32.44 g/mm2. In order to demonstrate the feasibility of the device, the short circuit test and impedance measurements for air, de-ionized water, phosphate buffered saline (PBS) at four concentrations (1, 2 × 10−4, 1 × 10−4, and 6.7 × 10−5 M) were performed. The experimental results show that the developed device integrated with a sensor can differentiate various samples.  相似文献   

10.
We developed meter-scale large-area capacitive fabric pressure sensors for floor sensors to monitor human position. In the fabric pressure sensor, two fabrics with stripe electrodes of conductive polymer-coated fibers woven into them were stacked vertically, and the capacitance changes between the top and bottom stripe electrodes were measured when pressure was applied. By using the die-coating of a conductive polymer and weaving the resultant fibers with meter-scale automatic looming machines, the 1 m × 1 m area with stripe electrodes at a 20 cm pitch was constructed. The pressure sensitivity, which depends on the number of the sensor fibers forming the stripe electrodes, was characterized and optimized to increase output capacitance change. The stripe electrodes with five sensor fibers were found to exhibit a capacitance change of 1.37 pF when pushed with the average foot pressure (i.e., 2.6 N/cm2), which is large enough to detect with conventional capacitance measurement circuits. Finally, pressure sensing with our woven pressure sensor fabric is demonstrated. Our meter-scale pressure sensor fabric technology will be used for bed and floor sensors for monitoring old people in nursing homes and hospitals.  相似文献   

11.
We present a two-axis micro fluxgate sensor on single chip for electronic compassing function. To measure X- and Y-axis magnetic fields, functional two fluxgate sensors were perpendicularly aligned and connected each other. The fluxgate sensor was composed of square-ring shaped magnetic core and solenoid excitation and pick-up coils. The solenoid coils and magnetic core were separated by benzocyclobutane which had high insulation and good planarization characters. Copper coil patterns of 10 μm width and 6 μm thickness were electroplated on Ti (300 Å)/Cu (1,500 Å) seed layers. 3 μm thick Ni0.8Fe0.2 (permalloy) film for the magnetic core was also electroplated under 2,000 gauss. Excellent linear response over the range of ?100 μT to +100 μT was obtained with the sensitivity of ~280 V/T. Actual chip size was 3.1×3.1 mm2. The sine and cosine signals of two-axis fluxgate sensor had a good function of azimuth compass.  相似文献   

12.
X-ray imaging is a very important technology in the fields of medical, biological, inspection, material science, etc. However, it is not enough to get the clear X-ray imaging with low absorbance. We have produced a diffraction gratings for obtaining high resolution X-ray phase imaging, such as X-ray Talbot interferometer. In this X-ray Talbot interferometer, diffraction gratings were required to have a fine, high accuracy, high aspect ratio structure. Then, we succeeded to fabricate a high aspect ratio diffraction grating with a pitch of 8 μm and small area using a deep X-ray lithography technique. We discuss that the diffraction gratings having a narrow pitch and an large effective area to obtain imaging size of practical use in medical application. If the pitch of diffraction gratings were narrow, it is expected high resolution imaging for X-ray Talbot interferometer. We succeeded and fabricated the diffraction grating with pitch of 5.3 μm, Au height of 28 μm and an effective area of 60 × 60 mm2.  相似文献   

13.
We present the design considerations of an autonomous wireless sensor and discuss the fabrication and testing of the various components including the energy harvester, the active sensing devices and the power management and sensor interface circuits. A common materials platform, namely, nanowires, enables us to fabricate state-of-the-art components at reduced volume and show chemical sensing within the available energy budget. We demonstrate a photovoltaic mini-module made of silicon nanowire solar cells, each of 0.5 mm2 area, which delivers a power of 260 μW and an open circuit voltage of 2 V at one sun illumination. Using nanowire platforms two sensing applications are presented. Combining functionalised suspended Si nanowires with a novel microfluidic fluid delivery system, fully integrated microfluidic–sensor devices are examined as sensors for streptavidin and pH, whereas, using a microchip modified with Pd nanowires provides a power efficient and fast early hydrogen gas detection method. Finally, an ultra-low power, efficient solar energy harvesting and sensing microsystem augmented with a 6 mAh rechargeable battery allows for less than 20 μW power consumption and 425 h sensor operation even without energy harvesting.  相似文献   

14.
In this paper, we propose a three-axis pneumatic tactile display that is precisely controlled by using integrated capacitive displacement sensors. The proposed tactile display consists of a core body with a 3 × 3 balloon array on its top surface, four lateral balloons made of latex rubber, and inner and outer frames that include capacitive displacement sensors based on a flexible printed circuit board. The 3 × 3 balloon array on the core body is designed to apply normal haptic stimulation to a human fingertip. In addition, the lateral motions of the core body and each frame produce haptic stimulation in a tangential direction. Precise control of lateral motion was achieved by feedback control using the capacitive displacement sensors. The size of the fabricated tactile display was 26 × 26 × 18 mm3. We experimentally performed manipulation of the proposed device with a custom control system, thereby demonstrating accurate control of displacement.  相似文献   

15.
A micro-machined passive vibration threshold sensor with a compliant stationary electrode has been designed, simulated and characterized. Bridge-type elastic beams as the compliant stationary electrode is adopted to improve the contact effect of the vibration threshold sensor and prolong its contact time. The dynamic contact between the two electrodes of the micro-machined vibration threshold sensor is simulated and analyzed by finite-element method (FEM). It’s indicated that a ‘skip contact’ phenomenon occurred during the switching on, which has been described and successfully explained in this paper. Deformations and stress distributions of the compliant electrode during contact under 55 g half-sine applied shock acceleration is also simulated. An all-metal cap that can undergo 6.08 × 105 Pa has been designed and fabricated by UV-LIGA process for package of the vibration threshold sensor. A drop hammer test of the fabricated vibration threshold sensor has been done, which is in accordance with the FEM simulation of dynamic contact process. The measured response time of the threshold sensor is about 0.3 ms under 55 g applied acceleration and two contact times in the skip contact are 16 and 4 µs, respectively, which are in agreement with simulated results. The obtained natural frequency of the vibration threshold sensor by a vibration test is about 810 Hz in the first model, which also agrees with the model.  相似文献   

16.
A rapid manufacturing process for the micro solenoid fluxgate sensor integrating multilayer amorphous ribbon core has been established, which combines the micro assembling method and the MEMS technologies. We select Fe-based amorphous soft magnetic ribbons for core materials and have fabricated the micro fluxgate sensors by MEMS technologies, with single-layer core and double-layer core respectively. The micro fluxgate sensors with double-layer core show the advantageous to that with single-layer core and exhibit sensitivity of 1089.2 V/T at excitation current of 120 mA rms, wide linear range of ?900 to 900 μT and power consumption of 24.48 mW. The noise power density of the single core fluxgate sensor is 2.48nT/Hz1/2@1 Hz.  相似文献   

17.
Wang  Quan  Yang  Xiaodan  Zhang  Yanmin  Ding  Jianning 《Microsystem Technologies》2011,17(10):1629-1633

In the process of piezo-resistive pressure sensor packaging, a simple thermo-compression bonding setup has been fabricated to achieve the wire bonding interconnection of a silicon chip with printed circuit board. An annealed gold wire is joined onto a pad surface with a needle-like chisel under a force of 0.5–1.5 N/point. The temperature of the substrate was maintained in the range of 150–200°C and the temperature of the chisel was fixed at around 150°C during wire bonding operation. The tensile strength of the wire bonding was measured with a bonding tester by the destructive-pulling experiment and was found to be at the average of 132 mN/mm2. The microstructure of the bonding point was examined by scanning electron microscopy. The interface of the thermo-compression boning was shown to possess an acceptable level of reliability for a micro-electromechanical system (MEMS)-based device. The results showed that this setup can be easily operated for fabrication and is suitable for fabricating not only low-cost pressure sensors, but also other MEMS devices.

  相似文献   

18.
Resource-constrained mobile sensors require periodic position measurements for navigation around the sensing region. Such information is often obtained using GPS or onboard sensors such as optical encoders. However, GPS is not reliable in all environments, and odometry accrues error over time. Although several localization techniques exist for wireless sensor networks, they are typically time consuming, resource intensive, and/or require expensive hardware, all of which are undesirable for lightweight mobile devices. In this paper, we describe a technique for determining spatial relationships that is suitable for resource-constrained mobile sensors. Angular separation between multiple pairs of stationary sensor nodes is derived using wheel encoder data in conjunction with the measured Doppler shift of an RF interference signal. Our experimental results demonstrate that using this technique, a robot is able to determine the angular separation between four pairs of sensors in a 45 × 35 m sensing region with an average error of 0.28 rad. in 0.68 s.  相似文献   

19.
We have developed SWCNT sensors for air-flow shear-stress measurement inside a polymethylmethacrylate (PMMA) “micro-wind tunnel” chip. An array of sensors is fabricated by using dielectrophoretic (DEP) technique to manipulate bundled single-walled carbon nanotubes (SWCNTs) across the gold microelectrodes on a PMMA substrate. The sensors are then integrated in a PMMA micro-wind tunnel, which is fabricated by SU-8 molding/hot-embossing technique. Since the sensors detect air flow by thermal transfer principle, we have first examined the IV characteristics of the sensors and confirmed that self-heating effect occurs when the input voltage is above ~1 V. We then performed the flow sensing experiment on the sensors using constant temperature (CT) configuration with input power of ~230 μW. The voltage output of the sensors increases with the increasing flow rate in the micro-wind tunnel and the detectable volumetric flow is in the order of 1 × 10−5m3/s. We also found that the activation power of the sensors has a linear relation with 1/3 exponential power of the shear stress which is similar to conventional hot-wire and polysilicon types of convection-based shear-stress sensors. Moreover, measurements of sensors with different overheat ratios were compared, and results showed that sensor is more sensitive to the flow with a higher overheat ratio.  相似文献   

20.
In this article, a compact and high‐efficiency loop rectenna with matching network elimination for wireless sensor applications at 2.45 GHz is presented. The proposed hollowed‐out square loop antenna is designed and directly provides a conjugate matching to a compact voltage‐doubler rectifier. The loop rectenna can harvest microwave power without increasing the total size or affecting the performance of a wireless sensor. The experiment results show that the peak microwave‐to‐dc conversion efficiency of 74% is obtained at 2.45 GHz when the input power is 18 dBm. The dimension of rectenna is 30 × 30 × 1 mm3 and only with a weight of 0.58 g, which successfully realizes a high power‐weight‐ratio (PWR). Hence, the proposed rectenna can provide a convenient and practical charging solution for wireless sensors in various applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号